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Counting circular permutations

Put n people 1, 2, . . . , n on a Ferris wheel, one per seat.

Rotations are regarded as equivalent:
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For general n, how many distinct circular permutations are there?

Read it clockwise starting at the 1: 134652.
(n-1)! circular permutations.
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Counting Ferris wheels and necklaces

Consider a Ferris wheel with n = 6 seats, each black or white.
We regard rotations of it as equivalent:

Use the same drawings for necklaces with black and white beads.
Ferris wheel only have rotations, but necklaces have both
rotations and reflections (by flipping them over), so for necklaces,
those 6 are equivalent to these:

Types of questions we can address:
How many colorings of Ferris wheels or necklaces are there with n
seats/beads and k colors, using the above notions of equivalence?

We’ll use n = 6 seats/beads and k = 2 colors (black and white).

How many colorings with exactly 4 white and 2 black?
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Representing the circular arrangements as strings

Start at the top spot. Read off colors clockwise; B=black, W=white:

BWWBBW WBWWBB BWBWWB BBWBWW WBBWBW WWBBWB

If you have a large collection of Ferris wheels or necklaces of this
sort, you could catalog them by choosing the alphabetically
smallest string for each. This one is BBWBWW.

This is an example of a canonical representative: given an object
with multiple representations, apply a rule to choose a specific one.
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Lexicographic Order on strings, lists, . . .

Lexicographic order generalizes alphabetical order to strings, lists,
sequences, . . . whose entries have a total ordering.
Compare x and y position by position, left to right.
x < y if the first different position is smaller in x than in y,
or if x is a prefix of y and is shorter than y.

Lex order on strings
CALIFORNIA < CALORIE:
Both start CAL. In the next position, I < O.
UC < UCSD: The left side is a prefix of the right.

Lex order on numeric lists
(10, 30, 20, 50, 60) < (10, 30, 20, 80, 5):
Both start 10, 30, 20. In the next position, 50 < 80.
(10, 30, 20) < (10, 30, 20, 80, 5): The left side is a prefix of the right.
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Distinct colorings of the Ferris wheel
For a Ferris wheel with 6 seats, each colored black or white, there
are 14 distinct colorings:

BBBBBB BBBBBW BBBBWW BBBWBW BBBWWW

BBWBBW BBWBWW BBWWBW BBWWWW BWBWBW

BWBWWW BWWBWW BWWWWW WWWWWW

In the necklace problem (reflections allowed), there are 13 distinct
colorings because two of the above become equivalent:

BBWBWW ≡ BBWWBW
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String rotation

Define a rotation operation ρ on strings that moves the last letter
to the first:

ρ(x1 x2 . . . xn) = xn x1 x2 . . . xn−1

ρ(CALIFORNIA) = ACALIFORNI

ρ2(CALIFORNIA) = IACALIFORN

For m > 0, ρm means to apply ρ consecutively m times.
For m = 0, 1, . . . , n, that moves the last m letters to the start.

ρ−1 moves the first letter to the end, and ρ−m moves the first m
letters to the end:

ρ−1(x1 x2 . . . xn) = x2 . . . xn x1

ρ−1(CALIFORNIA) = ALIFORNIAC

ρ−2(CALIFORNIA) = LIFORNIACA
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String rotation

CALIFORNIA has length n = 10 letters:

ρ10(CALIFORNIA) = CALIFORNIA so ρ10 = ρ0 = identity

ρ12(CALIFORNIA) = IACALIFORN ρ12 = ρ2

ρ−10(CALIFORNIA) = CALIFORNIA ρ−10 = ρ0 = identity

ρ−12(CALIFORNIA) = LIFORNIACA ρ−12 = ρ8

For strings of length n,
ρn is the identity
ρnq+m = ρm for any integer q.
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String rotation on Ferris wheel

ρ describes the rotations of the spots clockwise one position:

BWWBBW ρ(BWWBBW) = WBWWBB ρ2(BWWBBW) = BWBWWB

ρ6 is the identity.
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Cyclic group of order n
For rotations of n letters, there are n different rotations,

Cn =
{

1, ρ, ρ2, . . . , ρn−1}
Multiplication of group elements:

ρa · ρb = ρa+b = ρc where c = a + b mod n.
Note ρ0 = ρn = 1 (identity), ρm+n = ρm, etc.

Group
In abstract algebra (Math 100/103), a group G is a set of elements
and an operation x · y obeying these axioms:

Closure: For all x, y ∈ G, we have x · y ∈ G
Associative: (x · y) · z = x · (y · z) for all x, y, z ∈ G
Identity element: There is a unique element id ∈ G (here, it’s ρ0 = 1)

with id · x = x · id = x for all x ∈ G
Inverses: For every x ∈ G, there is a y ∈ G with x·y = y·x = id

(One can prove y is unique; denote it y = x−1.)

Cn is a commutative group (x · y = y · x for all x, y ∈ G).
Later in these slides, we’ll have a noncommutative group.
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Group action

Let S be the set of n-long strings in B, W.

Applying group G = Cn to S (or to directly rotate the Ferris wheels)
is called a group action:

For x ∈ S and g ∈ G, g(x) is an element of S.

For x ∈ S and g, h ∈ G, g(h(x)) = (gh)(x).

E.g., ρ2(ρ3(x)) = ρ5(x) because rotating x by 3 and then rotating the
result by 2, is the same as rotating x by 5 all at once.
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Orbits and stabilizers

Let G be a group acting on a set S.
We’ll use G = C6 and let S be 6-long strings of B, W.

Let x ∈ S. The orbit of x is Orb(x) = { g(x) : g ∈ G } ⊆ S

Orb(BWWBBW) = {BWWBBW,WBWWBB,BWBWWB,
BBWBWW,WBBWBW,WWBBWB}

Orb(BWWBWW) = {BWWBWW,WBWWBW,WWBWWB}

The stabilizer of x is Stab(x) = { g ∈ G : g(x) = x } ⊆ G

Stab(BWWBBW) = {1} Stab(BWWBWW) =
{

1, ρ3}
Notice |Orb(x)| · |Stab(x)| = 6 = |G| in both examples.
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Orbits for the 6 seat, 2 color Ferris wheel
The 26 = 64 strings split into 14 orbits.
The canonical representative (smallest alphabetically) is in bold.
The other elements represent rotations of it.

BBBBBB
BBBBBW WBBBBB BWBBBB BBWBBB BBBWBB BBBBWB
BBBBWW WBBBBW WWBBBB BWWBBB BBWWBB BBBWWB
BBBWBW WBBBWB BWBBBW WBWBBB BWBWBB BBWBWB
BBBWWW WBBBWW WWBBBW WWWBBB BWWWBB BBWWWB
BBWBBW WBBWBB BWBBWB
BBWBWW WBBWBW WWBBWB BWWBBW WBWWBB BWBWWB
BBWWBW WBBWWB BWBBWW WBWBBW WWBWBB BWWBWB
BBWWWW WBBWWW WWBBWW WWWBBW WWWWBB BWWWWB
BWBWBW WBWBWB
BWBWWW WBWBWW WWBWBW WWWBWB BWWWBW WBWWWB
BWWBWW WBWWBW WWBWWB
BWWWWW WBWWWW WWBWWW WWWBWW WWWWBW WWWWWB
WWWWWW
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Orbits and stabilizers

If y ∈ Orb(x) then x and y have the same orbit:
Orb(BWWBWW) = {BWWBWW,WBWWBW,WWBWWB}

= Orb(WBWWBW) = Orb(WWBWWB)

Also |Stab(x)| = |Stab(y)| (stabilizers have the same size, but are
not necessarily the same set); here, each stabilizer equals

{
1, ρ3
}

.

For x = BWWBWW,
Orb(x) =

{
x, ρ(x), ρ2(x)

}
Stab(x) =

{
1, ρ3}

Since x = ρ3(x), plug x 7→ ρ3(x) into the Orb(x) formula above:
Orb(ρ3(x)) =

{
ρ3(x), ρ(ρ3(x)), ρ2(ρ3(x))

}
=
{
ρ3(x), ρ4(x), ρ5(x)

}
We’ve accounted for all 6 group elements 1, ρ, . . . , ρ5 acting on x.

Theorem (Orbit-Stabilizier Theorem)
For all x ∈ S, |Orb(x)| · |Stab(x)| = |G|. Skip proof
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Proof of Orbit-Stabilizer Theorem
Optional for students who took Abstract Algebra (Math 100/103)

Stab(x) is a subgroup of G
Identity: 1x = x so 1 ∈ Stab(x).

Closure: If g, h ∈ Stab(x), then (gh)(x) = g(h(x)) = g(x) = x,
so gh ∈ Stab(x).

Inverse: If g ∈ Stab(x), then g−1(x) = g−1(g(x))
= (g−1g)(x) = 1x = x

so g−1 ∈ Stab(x).
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Proof of Orbit-Stabilizer Theorem
Optional for students who took Abstract Algebra (Math 100/103)

Write the elements of Stab(x) and Orb(x) as follows, with no
repetitions:

Stab(x) = {s1, s2, . . . , sk}

Orb(x) = {o1(x), o2(x), . . . , om(x)}

We will show that the products oi sj for i = 1, . . . , k
and j = 1, . . . , m

are distinct and give all elements of the group G.

Thus, km = |G|; that is, |Orb(x)| · |Stab(x)| = |G|.
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Proof of Orbit-Stabilizer Theorem
Optional for students who took Abstract Algebra (Math 100/103)

Stab(x) = {s1, s2, . . . , sk}

Orb(x) = {o1(x), o2(x), . . . , om(x)}

The products oi sj are all distinct
Suppose oi sj = op sq.

Apply both sides to x: left: oi sj(x) = oi(x)
right: op sq(x) = op(x)
combined: oi(x) = op(x)

Since elements of the orbit are only listed once, oi = op.

So oi sj = op sq becomes oi sj = oi sq.

Multiply both sides on the left by o−1 to get sj = sq.

Thus, if oi sj = op sq, then oi = op and sj = sq.
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Proof of Orbit-Stabilizer Theorem
Optional for students who took Abstract Algebra (Math 100/103)

Stab(x) = {s1, s2, . . . , sk}

Orb(x) = {o1(x), o2(x), . . . , om(x)}

Every element of G can be written oi sj

Let g ∈ G.

g(x) is in the orbit of x, so it equals oi(x) for some i.

oi(x) = g(x) ⇒ o−1
i g(x) = x

⇒ o−1
i g ∈ Stab(x)

⇒ o−1
i g = sj for some j

⇒ g = oi sj.
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Fixed points

Let g ∈ G. The fixed points of g are Fix(g) = { x ∈ S : g(x) = x } ⊆ S.
Fix(ρ2) = {BBBBBB,BWBWBW,WBWBWB,WWWWWW}

Systematic method to compute Fix(ρ2) for strings of length 6:

Let x = x1 x2 x3 x4 x5 x6 as 6 individual letters. Then ρ2(x) is
ρ2(x1 x2 x3 x4 x5 x6) = x5 x6 x1 x2 x3 x4

ρ2(x) = x gives x5 x6 x1 x2 x3 x4 = x1 x2 x3 x4 x5 x6

x5 = x1, x6 = x2, x1 = x3, x2 = x4, x3 = x5, x4 = x6
which combine into x1 = x3 = x5, x2 = x4 = x6.
So Fix(ρ2) consists of words of the form x = x1 x2 x1 x2 x1 x2.

For two colors B, W:
2 choices for x1 times 2 choices for x2 gives 4 fixed points.
For k colors: |Fix(ρ2)| = k2.
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Second method
Fill in one letter at a time and look at all the places it moves.
x = a −−−−−

ρ2(x) = x copies the a over 2 positions so x = a − a −−−
Do it again and get x = a − a − a −

Fill in another letter, x = aba − a − .
ρ2(x) = x copies the b over 2 positions so x = ababa −
and doing it again gives x = ababab.
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Fixed points of ρ4 for strings of length 6

ρ4(x1 x2 x3 x4 x5 x6) = x3 x4 x5 x6 x1 x2
ρ2(x) = x gives x1 = x3 = x5, x2 = x4 = x6
so Fix(ρ4) also consists of words of the form x1 x2 x1 x2 x1 x2.

First explanation

ρ2 · ρ2 = ρ4 so elements fixed by ρ2 are also fixed by ρ4.
ρ4 · ρ4 = ρ2 so elements fixed by ρ4 are also fixed by ρ2.
Thus Fix(ρ2) = Fix(ρ4).

General rule: In Cn, Fix(ρm) = Fix(ρd) where d = gcd(m, n).

Second explanation

ρ2 (rotate 2 forwards / clockwise) and ρ4 (rotate 2 backwards /
counterclockwise) are inverses.

Suppose g(x) = x. Apply g−1 to both sides to get x = g−1(x).

General rule: In any group G, Fix(g) = Fix(g−1) for all g ∈ G.
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Fixed points of ρm for strings of length 6

ρ(x1 x2 x3 x4 x5 x6) = x6 x1 x2 x3 x4 x5
ρ5(x1 x2 x3 x4 x5 x6) = x2 x3 x4 x5 x6 x1
ρ(x) = x and ρ5(x) = x both give x1 = · · · = x6,
so Fix(ρ) = Fix(ρ5) consists of words of the form x1 x1 x1 x1 x1 x1.
For B,W: this gives Fix(ρ) = {BBBBBB,WWWWWW}.
For k colors: there are k choices of x1 so |Fix(ρ)| = k.

ρ3(x1 x2 x3 x4 x5 x6) = x4 x5 x6 x1 x2 x3
ρ3(x) = x gives x1 = x4, x2 = x5, x3 = x6,
so Fix(ρ3) consists of words x1 x2 x3 x1 x2 x3.
For B,W: |Fix(ρ3)| = 23 = 8
For k colors: |Fix(ρ3)| = k3
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Fixed points of ρm for strings of length 6

Form of words |Fix(g)|
g fixed by g B,W k colors
1 x1 x2 x3 x4 x5 x6 26 = 64 k6

ρ, ρ5 x1 x1 x1 x1 x1 x1 2 k
ρ2, ρ4 x1 x2 x1 x2 x1 x2 22 = 4 k2

ρ3 x1 x2 x3 x1 x2 x3 23 = 8 k3
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Lemma (Burnside’s Lemma)
The number of orbits of G on X is

1
|G|

∑
g∈G

|Fix(g)|

In other words, the number of orbits is the average number of fixed
points per group element.

Ferris wheel with 6 seats and colors B, W
g Form of words |Fix(g)|
1 x1 x2 x3 x4 x5 x6 26 = 64
ρ x1 x1 x1 x1 x1 x1 2
ρ2 x1 x2 x1 x2 x1 x2 22 = 4
ρ3 x1 x2 x3 x1 x2 x3 23 = 8
ρ4 x1 x2 x1 x2 x1 x2 22 = 4
ρ5 x1 x1 x1 x1 x1 x1 2

The number of orbits is

64 + 2 + 4 + 8 + 4 + 2
6

=
84
6

= 14
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Ferris wheel with 4 white seats and 2 black seats

Consider Ferris wheels with 4 white seats and 2 black seats.

These are represented by rearrangements of the string WWWWBB.

There are
( 6

4,2

)
= 6!

4! 2! = 15 such strings.

Some are equivalent upon rotation, leaving:

BBWWWW BWBWWW BWWBWW
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Ferris wheel with 4 white seats and 2 black seats

g Form of words |Fix(g)|
1 x1 x2 x3 x4 x5 x6

(6
2

)
= 15 ways to choose 2 black

ρ x1 x1 x1 x1 x1 x1 0 since all 6 seats are same color
ρ2 x1 x2 x1 x2 x1 x2 0 since 3 seats are x1 and 3 are x2

ρ3 x1 x2 x3 x1 x2 x3
(3

1

)
= 3 ways to choose which xi is black

ρ4 x1 x2 x1 x2 x1 x2 0 since 3 seats are x1 and 3 are x2

ρ5 x1 x1 x1 x1 x1 x1 0 since all 6 seats are same color

The number of orbits is
15 + 0 + 0 + 3 + 0 + 0

6
=

18
6

= 3

BBWWWW BWBWWW BWWBWW
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Proof of Burnside’s Lemma

We’ll count the size of A = { (g, x) : g∈G, x∈S, g(x)=x } in two ways;
one based on each g ∈ G, one based on each x ∈ S.

Counting first by g ∈ G
For each g ∈ G, the values of x with g(x) = x form Fix(g), so

|A| =
∑

g∈G |Fix(g)|

Counting first by x ∈ S
For each x, the values of g with g(x) = x form Stab(x), so

|A| =
∑

x∈S |Stab(x)|
We’ll show this equals the number of orbits times |G|.

Putting the two counts together

|A| =
∑

g∈G |Fix(g)| =
∑

x∈S |Stab(x)| = number of orbits times |G|

so the number of orbits is 1
|G|

∑
g∈G |Fix(g)|
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∑
x∈S |Stab(x)| organized by orbits (each row is a complete orbit):

BBBBBB 6
BBBBBW WBBBBB BWBBBB BBWBBB BBBWBB BBBBWB + 1 + 1 + 1 + 1 + 1 + 1
BBBBWW WBBBBW WWBBBB BWWBBB BBWWBB BBBWWB + 1 + 1 + 1 + 1 + 1 + 1
BBBWBW WBBBWB BWBBBW WBWBBB BWBWBB BBWBWB + 1 + 1 + 1 + 1 + 1 + 1
BBBWWW WBBBWW WWBBBW WWWBBB BWWWBB BBWWWB + 1 + 1 + 1 + 1 + 1 + 1
BBWBBW WBBWBB BWBBWB + 2 + 2 + 2
BBWBWW WBBWBW WWBBWB BWWBBW WBWWBB BWBWWB + 1 + 1 + 1 + 1 + 1 + 1
BBWWBW WBBWWB BWBBWW WBWBBW WWBWBB BWWBWB + 1 + 1 + 1 + 1 + 1 + 1
BBWWWW WBBWWW WWBBWW WWWBBW WWWWBB BWWWWB + 1 + 1 + 1 + 1 + 1 + 1
BWBWBW WBWBWB + 3 + 3
BWBWWW WBWBWW WWBWBW WWWBWB BWWWBW WBWWWB + 1 + 1 + 1 + 1 + 1 + 1
BWWBWW WBWWBW WWBWWB + 2 + 2 + 2
BWWWWW WBWWWW WWBWWW WWWBWW WWWWBW WWWWWB + 1 + 1 + 1 + 1 + 1 + 1
WWWWWW + 6

= 6 · 14 = 84

By the Orbit-Stabilizer Theorem, in each row (orbit), all stabilizers
have the same size and sum to |orbit| · |stabilizer| = |G|.

Summing |Stab(x)| over all x ∈ S gives |G| times the # of orbits.
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Proof of Burnside’s Lemma
A = { (g, x) : g ∈ G, x ∈ S, g(x) = x }

Counting first by x ∈ S
Split S into orbits O1,O2, . . . ,ON ; these partition the set S.
For each x, the values of g with g(x) = x form Stab(x), so

|A| =
∑
x∈S

|Stab(x)|

For each x ∈ Oi, Stab(x) = |G|

|Orb(x)| =
|G|

|Oi|
.∑

x∈Oi

|Stab(x)| = |G|

|Oi|
· |Oi| = |G|

|A| =
N∑

i=1

∑
x∈Oi

|Stab(x)| =
N∑

i=1

|G| = N |G|

Equating the two counts gives |A| =
∑

g∈G |Fix(g)| = N |G|.
Dividing by |G| gives the number of orbits, N = 1

|G|

∑
g∈G |Fix(g)|.
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Reflections

Now we have rotations and reflections regarded as equivalent:

Let σ(x1 x2 . . . xn) = xn . . . x2 x1 (reverse a string):
σ(CALIFORNIA) = AINROFILAC

σ describes this mirror image: ρσ is reflect and then rotate:

7→

BWWBBW σ(BWWBBW) = WBBWWB ρσ(BWWBBW) = BWBBWW

Note σ2 = 1 and σρm = ρ−mσ.
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Mixing rotations and reflections

σρ(ABCDE) = σ(EABCD) = DCBAE

ρ−1σ(ABCDE) = ρ−1(EDCBA) = DCBAE

vs. ρσ(ABCDE) = ρ(EDCBA) = AEDCB

Notice σρ = ρ−1σ, NOT ρσ, because σ inverts the order of the
characters.
In general, σρm = ρ−mσ for any integer m.
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Simplifying products

Simplify any product of ρ’s, σ’s, and powers
Use σρm = ρ−mσ to move σ’s to the right and ρ’s to the left.
Combine powers and simplify with σ2 = 1 and ρ6 = 1.
Keep going until the final form: ρk or ρkσ with k = 0, . . . , 5.

σρ2σ3ρ4σρ−1 = σρ2σ3ρ4ρσ

σρ2σ3ρ4ρσ = σρ2σ3ρ5σ

σρ2σ3ρ5σ = σρ2σρ5σ = · · ·

· · · = σρ2σρ5σ = σρ2ρ−5σσ

σρ2ρ−5σσ = σρ−3 · 1 = σρ−3

σρ−3 = ρ3σ
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Reflections ρmσ

ρmσ is a reflection across an axis at angle (120 − 30m)◦ (polar coords.).
These are all the reflections that keep the spots in the same positions.

1
2

3
4

5

6
6

5

4
3

2

1
1

6

5
4

3

2
2

1

6
5

4

3

x σ(x), 120◦ ρσ(x), 90◦ ρ2σ(x), 60◦

3
2

1
6

5

4
4

3

2
1

6

5
5

4

3
2

1

6

ρ3σ(x), 30◦ ρ4σ(x), 0◦ ρ5σ(x), −30◦
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Dihedral group D2n (for n > 3)
Let D2n = {1, ρ, ρ2, . . . , ρn−1︸                 ︷︷                 ︸

Rotations

,σ, ρσ, ρ2σ, . . . , ρn−1σ︸                       ︷︷                       ︸
Reflections

}

This is a noncommutative group with 2n elements for n > 3
(some are degenerate for n = 1, 2).
Simplify multiplications using σ2 = 1, ρn = 1, and σρm = ρ−mσ.
Some disciplines and books use the notation Dn instead of D2n.
Always check which definition is in use.

For n = 6 and G = D12,
Orb(BWWBBW) has 12 elements, each stabilized only by the identity.

Orb(BWWBWW) = {BWWBWW,WBWWBW,WWBWWB}
Stab(BWWBWW) =

{
1, ρ3, ρσ, ρ4σ

}
Stab(WBWWBW) =

{
1, ρ3,σ, ρ3σ

}
Stab(WWBWWB) =

{
1, ρ3, ρ2σ, ρ5σ

}
The stabilizers are different but all have the same size, |G|

|orbit| =
12
3 = 4.
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Fix(g) in dihedral group D12 on strings of length 6
Fix(σ)

σ(x1 x2 x3 x4 x5 x6) = x6 x5 x4 x3 x2 x1

x = σ(x) is x1 x2 x3 x4 x5 x6 = x6 x5 x4 x3 x2 x1
so x1 = x6, x2 = x5, x3 = x4

Elements of Fix(σ) have form x = x1 x2 x3 x3 x2 x1.
For 2 color necklaces: 23 = 8 elements; for k colors, k3 elements.

Second method
Fill in one letter at a time and look at all the places it moves.
x = a −−−−−

σ(x) = − − −−− a so σ(x) = x gives x = a −−−− a.
σ(a −−−− a) = a −−−− a, so a’s are completed.
σ(ab −−− a) = a −−− ba so σ(x) = x gives x = ab −− ba.
σ(abc − ba) = ab − cba so x = abccba.
For 2 color necklaces: 23 = 8 elements; for k colors, k3 elements.

Prof. Tesler Ch. 18.1: Structures with symmetry Math 184A / Winter 2019 35 / 38



Fix(g) in dihedral group D12 on strings of length 6
Fix(ρσ)

ρσ(x1 x2 x3 x4 x5 x6) = x1 x6 x5 x4 x3 x2

x = ρσ(x) is x1 x2 x3 x4 x5 x6 = x1 x6 x5 x4 x3 x2
giving x1, x4 unrestricted, x2 = x6, x3 = x5

Elements of Fix(ρσ) have form x = x1 x2 x3 x4 x3 x2.
For 2 colors, 24 = 16 elements; for k colors, k4 elements.

Second method
Fill in one letter at a time and look at all the places it moves.
x = a −−−−−

ρσ(x) = a −−−−− , so a’s are completed.
ρσ(ab −−−−) = a −−−− b, so ρσ(x) = x gives x = ab −−− b.
ρσ(abc −− b) = ab −− cb, so x = abc − cb.
x = abcdcb.
For 2 colors, 24 = 16 elements; for k colors, k4 elements.
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Counting necklaces with 6 black and white beads
|Fix(g)|

g Form of words B,W k colors
1 x1 x2 x3 x4 x5 x6 26 = 64 k6

ρ, ρ5 x1 x1 x1 x1 x1 x1 2 k
ρ2, ρ4 x1 x2 x1 x2 x1 x2 22 = 4 k2

ρ3 x1 x2 x3 x1 x2 x3 23 = 8 k3

σ x1 x2 x3 x3 x2 x1 23 = 8 k3

ρσ x1 x2 x3 x4 x3 x2 24 = 16 k4

ρ2σ x1 x1 x3 x4 x4 x3 23 = 8 k3

ρ3σ x1 x2 x1 x4 x5 x4 24 = 16 k4

ρ4σ x1 x2 x2 x1 x5 x5 23 = 8 k3

ρ5σ x1 x2 x3 x2 x1 x6 24 = 16 k4

For 6 bead necklaces made from black and white beads, Burnside’s
Lemma gives the number of orbits:

64 + 2(2 + 4) + 8 + 8 + 16 + 8 + 16 + 8 + 16
12

=
156
12

= 13
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Differences in book’s notation

Slides Our textbook
Composition Right-to-left Left-to-right

(gh)(x) = g(h(x)) (gh)(x) = h(g(x))

Stabilizer Stab(x) Gx

Orbit Orb(x) xG

Fixed points Fix(g) Fg

Subgroup H ⊆ G H 6 G

Orbit-Stabilizer Theorem |Orb(x)| · |Stab(x)| = |G| |xG| · |Gx| = |G|

Burnside’s Lemma
# orbits = 1

|G|

∑
g∈G |Fix(g)| 1

|G|

∑
g∈G |Fg|
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