4.4-4.5 Geometric and Negative Binomial Distributions

Prof. Tesler

Math 186
Winter 2020

Geometric Distribution

- Consider a biased coin with probability p of heads.
- Flip it repeatedly (potentially ∞ times).
- Let X be the number of flips until the first head.
- Example: TTTHTTHHT has $X=4$.
- The pdf is

$$
p_{X}(k)= \begin{cases}(1-p)^{k-1} p & \text { for } k=1,2,3, \ldots ; \\ 0 & \text { otherwise }\end{cases}
$$

- Mean: $\mu=\frac{1}{p}$

Variance: $\sigma^{2}=\frac{1-p}{p^{2}}$
Std dev: $\sigma=\frac{\sqrt{1-p}}{p}$

Negative Binomial Distribution

- Consider a biased coin with probability p of heads.
- Flip it repeatedly (potentially ∞ times).
- Let X be the number of flips until the $r^{\text {th }}$ head ($r=1,2,3, \ldots$ is a fixed parameter).
- For $r=3$, Ttтнтннtт has $X=7$.
- $X=k$ when
- first $k-1$ flips: $r-1$ heads and $k-r$ tails in any order;
- $k^{\text {th }}$ flip: heads
so the pdf is

$$
p_{X}(k)=\binom{k-1}{r-1} p^{r-1}(1-p)^{k-r} \cdot p=\binom{k-1}{r-1} p^{r}(1-p)^{k-r}
$$

provided $k=r, r+1, r+2, \ldots$;

$$
p_{X}(k)=0 \text { otherwise. }
$$

Negative Binomial Distribution - mean and variance

- Consider the sequence of flips TtTHTHHTTH.
- Break it up at each heads:

$$
\underbrace{T T T H}_{x_{1}=4} / \underbrace{T H}_{x_{2}=2} / \underbrace{H}_{x_{3}=1} / \underbrace{T T H}_{x_{4}=3}
$$

- X_{1} is the number of flips until the $1^{\text {st }}$ heads; X_{2} is the number of additional flips until the $2^{\text {nd }}$ heads; X_{3} is the number of additional flips until the $3^{\text {rd }}$ heads; \ldots
- The X_{i} 's are i.i.d. geometric random variables with parameter p, and $X=X_{1}+\cdots+X_{r}$.
- Mean: $E(X)=E\left(X_{1}\right)+\cdots+E\left(X_{r}\right)=\frac{1}{p}+\cdots+\frac{1}{p}=\frac{r}{p}$

Variance: $\sigma^{2}=\frac{1-p}{p^{2}}+\cdots+\frac{1-p}{p^{2}}=\frac{r(1-p)}{p^{2}}$
Standard deviation: $\sigma=\frac{\sqrt{r(1-p)}}{p}$

Geometric Distribution - example

- About 10% of the population is left-handed.
- Look at the handedness of babies in birth order in a hospital.
- Number of births until first left-handed baby:

Geometric distribution with $p=.1$:

$$
p_{X}(x)=.9^{x-1} \cdot .1 \quad \text { for } x=1,2,3, \ldots
$$

Geometric distribution

- Mean: $\frac{1}{p}=\frac{1}{.1}=10$.

Standard deviation: $\sigma=\frac{\sqrt{1-p}}{p}=\frac{\sqrt{9}}{.1} \approx 9.487$, which is HUGE!

Negative Binomial Distribution - example

- Number of births until $8^{\text {th }}$ left-handed baby:

Negative binomial, $r=8, p=.1$.

$$
p_{X}(x)=\binom{x-1}{8-1}(.1)^{8}(.9)^{x-8} \quad \text { for } x=8,9,10, \ldots
$$

Neg. binom. distribution

- Mean: $r / p=8 / .1=80$.

Standard deviation: $\frac{\sqrt{r(1-p)}}{p}=\frac{\sqrt{8(.9)}}{.1} \approx 26.833$.

- Probability the $50^{\text {th }}$ baby is the $8^{\text {th }}$ left-handed one:

$$
p_{X}(50)=\binom{50-1}{8-1}(.1)^{8}(.9)^{50-8}=\binom{49}{7}(.1)^{8}(.9)^{42} \approx 0.0103
$$

Where do the distribution names come from?

The PDFs correspond to the terms in certain Taylor series

Geometric series

- For real a, x with $|x|<1$,

$$
\begin{aligned}
\frac{a}{1-x} & =\sum_{i=0}^{\infty} a x^{i} \\
& =a+a x+a x^{2}+\cdots
\end{aligned}
$$

- Total probability for the geometric distribution:

$$
\begin{gathered}
\sum_{k=1}^{\infty}(1-p)^{k-1} p \\
\quad=\frac{p}{1-(1-p)} \\
\quad=\frac{p}{p}=1
\end{gathered}
$$

Negative binomial series

- For integer $r>0$ and real x with $|x|<1$,

$$
\frac{1}{(1-x)^{r}}=\sum_{k=r}^{\infty}\binom{k-1}{r-1} x^{k-r}
$$

- Total probability for the negative binomial distribution:

$$
\begin{aligned}
\sum_{k=r}^{\infty} & \binom{k-1}{r-1} p^{r}(1-p)^{k-r} \\
& =p^{r} \sum_{k=r}^{\infty}\binom{k-1}{r-1}(1-p)^{k-r} \\
& =p^{r} \cdot \frac{1}{(1-(1-p))^{r}}=1
\end{aligned}
$$

Geometric and negative binomial - versions

Unfortunately, there are 4 versions of the definitions of these distributions, so you may see them defined differently elsewhere:

- Version 1: the definitions we already did (call the variable X).
- Version 2 (geometric): Let Y be the number of tails before the first heads, so TTTHTTHHT has $Y=3$.

$$
\text { pdf: } \quad p_{Y}(k)= \begin{cases}(1-p)^{k} p & \text { for } k=0,1,2, \ldots ; \\ 0 & \text { otherwise }\end{cases}
$$

Since $Y=X-1$, we have $E(Y)=\frac{1}{p}-1, \operatorname{Var}(Y)=\frac{1-p}{p^{2}}$.

- Version 2 (negative binomial): Let Y be the number of tails before the $r^{\text {th }}$ heads, so $Y=X-r$.

$$
p_{Y}(k)= \begin{cases}\binom{k+r-1}{r-1} p^{r}(1-p)^{k} & \text { for } k=0,1,2, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

- Versions 3 and 4: switch the roles of heads and tails in the first two versions (so p and $1-p$ are switched).

