11. Regression and Least Squares

Prof. Tesler

Math 186 Winter 2019

Prof. Tesler

Regression

Given *n* points $(x_1, y_1), (x_2, y_2), \ldots$, we want to determine a function y = f(x) that is close to them.

Scatter plot of data (x,y)

Х

Regression

Based on knowledge of the underlying problem or on plotting the data, you have an idea of the general form of the function, such as:

Exponential Decay $y = Ae^{-Bx}$ Logistic Curve $y = A/(1 + B/C^x)$

Goal: Compute the parameters $(\beta_0, \beta_1, ..., \text{ or } A, B, C, ...)$ that give a "best fit" to the data.

Prof. Tesler

Regression

- The methods we consider require the *parameters* to occur linearly. It is fine if (x, y) do not occur linearly. E.g., plugging (x, y) = (2, 3) into $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$ gives $3 = \beta_0 + 2\beta_1 + 4\beta_2 + 8\beta_3$.
- For exponential decay, $y = Ae^{-Bx}$, parameter *B* does not occur linearly. Transform the equation to:

$$\ln y = \ln(A) - Bx = A' - Bx$$

When we plug in (x, y) values, the parameters A', B occur linearly.

• Transform the logistic curve $y = A/(1 + B/C^x)$ to:

$$\ln\left(\frac{A}{y}-1\right) = \ln(B) - x\ln(C) = B' + C'x$$

where A is determined from $A = \lim_{x \to \infty} y(x)$. Now B', C' occur linearly.

Given *n* points $(x_1, y_1), (x_2, y_2), \ldots$, we will fit them to a line $\hat{y} = \beta_0 + \beta_1 x$:

- Independent variable: x. We assume the x's are known exactly or have negligible measurement errors.
- *Dependent variable: y*. We assume the *y*'s depend on the *x*'s but fluctuate due to a random process.
- We do not have y = f(x), but instead, y = f(x) + error.

Given *n* points $(x_1, y_1), (x_2, y_2), \ldots$, we will fit them to a line $\hat{y} = \beta_0 + \beta_1 x$:

Predicted y value (on the line): \hat{y}_i Actual data (•): y_i Residual (actual y minus prediction): ϵ_i

$$\hat{y}_i = \beta_0 + \beta_1 x_i$$

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

$$\epsilon_i = y_i - \hat{y}_i = y_i - (\beta_0 + \beta_1 x_i)$$

We will use the *least squares method*: pick parameters β_0 , β_1 that minimize the sum of squares of the residuals.

$$L = \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2$$

$$L = \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2$$

To find β_0 , β_1 that minimize this, solve $\nabla L = \left(\frac{\partial L}{\partial \beta_0}, \frac{\partial L}{\partial \beta_1}\right) = (0, 0)$:

$$\frac{\partial L}{\partial \beta_0} = -2\sum_{i=1}^n (y_i - (\beta_0 + \beta_1 x_i)) = 0 \quad \Rightarrow \quad n\beta_0 + \left(\sum_{i=1}^n x_i\right)\beta_1 = \sum_{i=1}^n y_i$$
$$\frac{\partial L}{\partial \beta_1} = -2\sum_{i=1}^n (y_i - (\beta_0 + \beta_1 x_i))x_i = 0 \quad \Rightarrow \quad \left(\sum_{i=1}^n x_i\right)\beta_0 + \left(\sum_{i=1}^n x_i^2\right)\beta_1 = \sum_{i=1}^n x_i y_i$$

which has solution (all sums are i = 1 to n)

$$\beta_{1} = \frac{n\left(\sum_{i} x_{i} y_{i}\right) - \left(\sum_{i} x_{i}\right)\left(\sum_{i} y_{i}\right)}{n\left(\sum_{i} x_{i}^{2}\right) - \left(\sum_{i} x_{i}\right)^{2}} = \frac{\sum_{i} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i} (x_{i} - \bar{x})^{2}} \qquad \beta_{0} = \bar{y} - \beta_{1} \bar{x}$$

Not shown: use 2nd derivatives to confirm it's a minimum rather than a maximum or saddle point.

Prof. Tesler

Best fitting line

 $y = \beta_0 + \beta_1 x + \varepsilon$

 $x = \alpha_0 + \alpha_1 y + \varepsilon$

• The best fit for $y = \beta_0 + \beta_1 x + \text{error}$

or $x = \alpha_0 + \alpha_1 y + \text{error give different lines}!$

- $y = \beta_0 + \beta_1 x + \text{error}$ assumes the *x*'s are known exactly with no errors, while the *y*'s have errors.
- $x = \alpha_0 + \alpha_1 y + \text{error}$ is the other way around.

Total Least Squares / Principal Components Analysis

- In many experiments, both x and y have measurement errors.
- Use Total Least Squares or Principal Components Analysis, in which the residuals are measured perpendicular to the line.
- Details require advanced linear algebra, beyond Math 18.

Ch. 11: Linear Regression

Confidence intervals

- The best fit line is different than the true line —.
- We found point estimates of β_0 and β_1 .
- Assuming errors are independent of x and normally distributed gives
 - Confidence intervals for β_0 , β_1 .
 - A prediction interval to extrapolate y = f(x) at other x's.
 Warning: it may diverge from the true line when we go out too far.
 - Not shown: one can also do hypothesis tests on the values of β₀ and β₁, and on whether two samples give the same line.

Confidence intervals

• The method of least squares gave point estimates of β_0 and β_1 :

$$\hat{\beta}_{1} = \frac{n \sum_{i} x_{i} y_{i} - (\sum_{i} x_{i}) (\sum_{i} y_{i})}{n \left(\sum_{i} x_{i}^{2}\right) - \left(\sum_{i} x_{i}\right)^{2}} = \frac{\sum_{i} (x_{i} - \bar{x}) (y_{i} - \bar{y})}{\sum_{i} (x_{i} - \bar{x})^{2}} \qquad \hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{x}$$

• The sample variance of the residuals is

$$s^{2} = \frac{1}{n-2} \sum_{i=1}^{n} (y_{i} - (\hat{\beta}_{0} + \hat{\beta}_{1}x_{i}))^{2}$$
 (with $df = n-2$).

• $100(1 - \alpha)$ % confidence intervals:

$$\beta_{0}: \quad \left(\hat{\beta}_{0} - t_{\alpha/2, n-2} \frac{s\sqrt{\sum_{i} x_{i}^{2}}}{\sqrt{n\sum_{i} (x_{i} - \bar{x})}}, \hat{\beta}_{0} + t_{\alpha/2, n-2} \frac{s\sqrt{\sum_{i} x_{i}^{2}}}{\sqrt{n\sum_{i} (x_{i} - \bar{x})}}\right)$$

$$\beta_{1}: \quad \left(\hat{\beta}_{1} - t_{\alpha/2, n-2} \frac{s}{\sqrt{\sum_{i} (x_{i} - \bar{x})}}, \hat{\beta}_{1} + t_{\alpha/2, n-2} \frac{s}{\sqrt{\sum_{i} (x_{i} - \bar{x})}}\right)$$

$$y \text{ at new } x: \quad (\hat{y} - w, \hat{y} + w) \text{ with } \hat{y} = \beta_{0} + \beta_{1} x$$

$$\text{and } w = t_{\alpha/2, n-2} \cdot s \cdot \sqrt{1 + \frac{1}{n} + \frac{(x - \bar{x})^{2}}{\sum_{i} (x_{i} - \bar{x})^{2}}}$$

Covariance

• Let *X* and *Y* be random variables, possibly dependent.

• Let
$$\mu_X = E(X)$$
, $\mu_Y = E(Y)$

•
$$\operatorname{Var}(X+Y) = E((X+Y-\mu_X-\mu_Y)^2) = E\left(\left((X-\mu_X)+(Y-\mu_Y)\right)^2\right)$$
$$= E\left(\left(X-\mu_X\right)^2\right) + E\left((Y-\mu_Y)^2\right) + 2E\left((X-\mu_X)(Y-\mu_Y)\right)$$
$$= \operatorname{Var}(X) + \operatorname{Var}(Y) + 2\operatorname{Cov}(X,Y)$$
where the *covariance* of *X* and *Y* is defined as
$$\operatorname{Cov}(X,Y) = E\left((X-\mu_X)(Y-\mu_Y)\right) = E(XY) - E(X)E(Y)$$

• Independent variables have E(XY) = E(X)E(Y), so Cov(X, Y) = 0. But Cov(X, Y) = 0 does not guarantee X and Y are independent.

Covariance and independence

- Independent variables have E(XY) = E(X)E(Y), so Cov(X, Y) = 0. But Cov(X, Y) = 0 does not guarantee X and Y are independent.
- Consider the standard normal distribution, Z.
- Z and Z^2 are dependent.
- $\operatorname{Cov}(Z, Z^2) = E(Z^3) E(Z)E(Z^2).$
- The standard normal distribution has mean 0: E(Z) = 0.
- E(Z³) = 0 since Z³ is an odd function and the pdf of Z is symmetric around Z = 0.

• So
$$Cov(Z, Z^2) = 0$$
.

We have

$$Var(X + Y) = Var(X) + Var(Y) + 2 Cov(X, Y)$$

where the *covariance* of *X* and *Y* is defined as

$$\operatorname{Cov}(X, Y) = E\left((X - \mu_X)(Y - \mu_Y)\right) = E(XY) - E(X)E(Y)$$

Additional properties of covariance

- $\operatorname{Cov}(X, X) = \operatorname{Var}(X)$
- $\operatorname{Cov}(X, Y) = \operatorname{Cov}(Y, X)$
- $\operatorname{Cov}(aX + b, cY + d) = \operatorname{ac}\operatorname{Cov}(X, Y)$

$$\operatorname{Cov}(X, Y) = E((X - \mu_X)(Y - \mu_Y))$$

• When Cov(X, Y) is negative: There is a tendency to have $X > \mu_X$ when $Y < \mu_Y$ and vice-versa, and $X < \mu_X$ when $Y > \mu_Y$ and vice-versa.

• When Cov(X, Y) = 0:

a) X and Y **might** be independent, but it's not guaranteed.

b) $\operatorname{Var}(X + Y) = \operatorname{Var}(X) + \operatorname{Var}(Y)$

Sample variance and covariance

Variance of a random variable:

$$\sigma^2 = \operatorname{Var}(X) = E((X - \mu_X)^2) = E(X^2) - (E(X))^2$$

Sample variance from data x_1, \ldots, x_n to estimate σ^2 :

$$s^{2} = \operatorname{var}(x) = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_{i}^{2} \right) - \frac{n}{n-1} \bar{x}^{2}$$

Covariance between random variables *X*, *Y*:

$$\sigma_{XY} = \text{Cov}(X, Y) = E((X - \mu_X)(Y - \mu_Y)) = E(XY) - E(X)E(Y)$$

Sample covariance from data $(x_1, y_1), \ldots, (x_n, y_n)$ to estimate σ_{XY} :

$$s_{XY} = \operatorname{cov}(x, y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_i y_i \right) - \frac{n}{n-1} \bar{x} \bar{y}$$

Correlation coefficient

Let *X* and *Y* be two random variables. Their *correlation coefficient* is

$$\rho(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}$$

- This is a normalized version of covariance, and is between ± 1 .
- For a line Y = aX + b with a, b constants $(a \neq 0)$,

$$\rho(X, Y) = \frac{a \operatorname{Var}(X)}{\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(aX)}} = \frac{a \sigma^2}{\sigma \cdot |a|\sigma} = \frac{a}{|a|} = \pm 1 \text{ (sign of } a\text{)}$$

- $\rho(X, Y) = \pm 1$ iff Y = aX + b with a, b constants ($a \neq 0$).
- Closer to ± 1 : more linear. Closer to 0: less linear.
- If X and Y are independent then ρ(X, Y)=0.
 The converse is not valid: dependent variables can have ρ(X, Y)=0.

 ρ(X,Y) is estimated from data by the sample correlation coefficient (a.k.a. Pearson product-moment correlation coefficient):

$$r(x,y) = \frac{\operatorname{cov}(x,y)}{\sqrt{\operatorname{var}(x)\operatorname{var}(y)}} = \frac{\sum_{i}(x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum_{i}(x_{i} - \bar{x})^{2}}\sqrt{\sum_{i}(y_{i} - \bar{y})^{2}}}$$
$$= \frac{n\sum_{i}x_{i}y_{i} - (\sum_{i}x_{i})(\sum_{i}y_{i})}{\sqrt{n\sum_{i}x_{i}^{2} - (\sum_{i}x_{i})^{2}}\sqrt{n\sum_{i}y_{i}^{2} - (\sum_{i}y_{i})^{2}}}$$

• People often report r^2 (between 0 and 1) instead of r.

Sample correlation coefficient r

r = -1 for lines with negative slope (a < 0)

r undefined for horizontal line (Y = b)

Other rows: coming up!

Interpretation of r^2

- Let $\hat{y}_i = \hat{\beta}_1 x_i + \hat{\beta}_0$ be the predicted y-value for x_i based on the least squares line. • Write the deviation of y_i from \bar{y} as $y_i - \bar{y} = (y_i - \hat{y}_i) + (\hat{y}_i - \bar{y})$ TotalUnexplainedExplaineddeviationby lineby line It can be shown that the sum of squared deviations for all y's is $\sum_{i} (y_{i} - \bar{y})^{2} = \sum_{i} (y_{i} - \hat{y}_{i})^{2} + \sum_{i} (\hat{y}_{i} - \bar{y})^{2} + 2\sum_{i} (y_{i} - \hat{y}_{i})(\hat{y}_{i} - \bar{y})$ Total
ariationUnexplained
variationExplained
variation= 0 by a miracle!
(Tedious algebra not shown) variation and that $r^{2} = \frac{\sum_{i} (\hat{y}_{i} - \bar{y})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}} = \frac{\text{Explained variation}}{\text{Total variation}}$ • r = 1: 100% of the variation is explained by the line and 0% is due to other factors, and the slope is positive.
- r = -.8: 64% of the variation is explained by the line and 36% is due to other factors, and the slope is negative.

Sample correlation coefficient *r*

http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient

- **Top row:** Linear relations with varying r.
- Bottom: r = 0, yet X and Y are dependent in all of these (except possibly the last); it's just that the relationship is not a line.

Correlation does not imply causation

- High correlation between X and Y doesn't mean X causes Y or vice-versa. It could be a coincidence. Or they could both be caused by a third variable.
- Website tylervigen.com plots many data sets (various quantities by year) against each other to find spurious correlations:

spurious correlations

Correlation: 0.992558										
Per capita consumption of margarine (US) Pounds (USDA)	8.2	7	6.5	5.3	5.2	4	4.6	4.5	4.2	3.7
Divorce rate in Maine Divorces per 1000 people (US Census)	5	4.7	4.6					4.2		4.1
	<u>2000</u>	<u>2001</u>	<u>2002</u>	<u>2003</u>	<u>2004</u>	<u>2005</u>	<u>2006</u>	<u>2007</u>	<u>2008</u>	<u>2009</u>

http://www.tylervigen.com/view_correlation?id=1703

Spurious correlations Money spent on pets (US) inversely correlates with Per capita consumption of whole milk (US) Money spent on pets (US) Per capita consumption of whole milk (US)

<u>2000</u>	<u>2001</u>	<u>2002</u>	<u>2003</u>	<u>2004</u>	<u>2005</u>	<u>2006</u>	<u>2007</u>	<u>2008</u>	<u>2009</u>
39.7	41.9	44.6	46.8	49.8	53.1	56.9	61.8		67.1
7.7	7.4	7.3	7.2	7	6.6	6.5	6.1	5.9	5.7
									2000 2001 2002 2003 2004 2005 2006 2007 2008 39.7 41.9 44.6 46.8 49.8 53.1 56.9 61.8 65.7 7.7 7.4 7.3 7.2 7 6.6 6.5 6.1 5.9

http://tylervigen.com/view_correlation?id=1759

More about interpretation of correlation

- Low r^2 does NOT guarantee independence; it just means that a line $y = \beta_0 + \beta_1 x$ is not a good fit to the data.
- *r* is an estimate of ρ. The estimate improves with higher *n*.
 With additional assumptions on the underlying joint distribution of *X*, *Y*, we can use *r* to test

 $H_0: \rho = 0$ vs. $H_1: \rho \neq 0$ (or other values).

Best fits and correlation generalize to other models, including

Polynomial regression	$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_p x^p$
Multiple linear regression	$y = \beta_0 + \beta_1 t + \beta_2 u + \dots + \beta_p w$
	<i>t</i> , <i>u</i> ,, <i>w</i> : multiple independent variables <i>y</i> : dependent variable
Weighted versions	When the variance is different at each value of the independent variables