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Regression

Given n points (x1, y1), (x2, y2), . . . , we want to determine a function
y = f (x) that is close to them.
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Regression
Based on knowledge of the underlying problem or on plotting the data,
you have an idea of the general form of the function, such as:

Line y = β0 + β1x Polynomial y = β0 + β1x + β2 x2 + β3 x3
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Exponential Decay y = Ae−Bx Logistic Curve y = A/(1 + B/C x)
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Goal: Compute the parameters (β0,β1, . . . or A, B, C, . . .) that give a
“best fit” to the data.
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Regression

The methods we consider require the parameters to occur linearly.
It is fine if (x, y) do not occur linearly.
E.g., plugging (x, y) = (2, 3) into y = β0 + β1x + β2 x2 + β3 x3

gives 3 = β0 + 2β1 + 4β2 + 8β3.

For exponential decay, y = Ae−Bx, parameter B does not occur
linearly. Transform the equation to:

ln y = ln(A) − Bx = A ′ − Bx

When we plug in (x, y) values, the parameters A ′, B occur linearly.

Transform the logistic curve y = A/(1 + B/Cx) to:

ln
(

A
y
− 1
)

= ln(B) − x ln(C) = B ′ + C ′ x

where A is determined from A = lim
x→∞ y(x). Now B ′, C ′ occur linearly.
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Least squares fit to a line
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Given n points (x1, y1), (x2, y2), . . . , we will fit them to a line ŷ = β0 +β1x:

Independent variable: x. We assume the x’s are known exactly or
have negligible measurement errors.
Dependent variable: y. We assume the y’s depend on the x’s but
fluctuate due to a random process.
We do not have y = f (x), but instead, y = f (x) + error.
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Least squares fit to a line
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Given n points (x1, y1), (x2, y2), . . . , we will fit them to a line ŷ = β0 +β1x:

Predicted y value (on the line): ŷi = β0 + β1xi

Actual data (•): yi = β0 + β1xi + εi

Residual (actual y minus prediction): εi = yi − ŷi = yi − (β0 + β1xi)
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Least squares fit to a line
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We will use the least squares method : pick parameters β0,β1 that
minimize the sum of squares of the residuals.

L =

n∑
i=1

(yi − (β0 + β1xi))
2
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Least squares fit to a line

L =

n∑
i=1

(yi − (β0 + β1xi))
2

To find β0,β1 that minimize this, solve ∇L =
(
∂L
∂β0

, ∂L
∂β1

)
= (0, 0):

∂L
∂β0

= −2
n∑

i=1

(yi − (β0 + β1xi)) = 0 ⇒ nβ0 +

(
n∑

i=1

xi

)
β1 =

n∑
i=1

yi

∂L
∂β1

= −2
n∑

i=1

(yi − (β0 + β1xi))xi = 0 ⇒

(
n∑

i=1

xi

)
β0 +

(
n∑

i=1

xi
2

)
β1 =

n∑
i=1

xiyi

which has solution (all sums are i = 1 to n)

β1 =
n (

∑
i xi yi) − (

∑
i xi) (

∑
i yi)

n (
∑

i xi
2) − (

∑
i xi)

2 =

∑
i(xi − x̄)(yi − ȳ)∑

i(xi − x̄)2 β0 = ȳ − β1x̄

Not shown: use 2nd derivatives to confirm it’s a minimum rather than a
maximum or saddle point.
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Best fitting line
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The best fit for y = β0 + β1x + error
or x = α0 + α1y + error give different lines!

y = β0 + β1x + error assumes the x’s are known exactly with no
errors, while the y’s have errors.
x = α0 + α1y + error is the other way around.
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Total Least Squares / Principal Components Analysis
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x = 1.685727 y = 25.99114

In many experiments, both x and y have measurement errors.
Use Total Least Squares or Principal Components Analysis, in
which the residuals are measured perpendicular to the line.
Details require advanced linear algebra, beyond Math 18.
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Confidence intervals
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The best fit line — is different than the true line —.
We found point estimates of β0 and β1.
Assuming errors are independent of x and normally distributed gives

Confidence intervals for β0, β1.
A prediction interval to extrapolate y = f (x) at other x’s.
Warning: it may diverge from the true line when we go out too far.
Not shown: one can also do hypothesis tests on the values of β0
and β1, and on whether two samples give the same line.
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Confidence intervals
The method of least squares gave point estimates of β0 and β1:

β̂1 =
n
∑

i xiyi − (
∑

i xi) (
∑

i yi)

n (
∑

i xi
2) − (

∑
i xi)

2 =

∑
i(xi − x̄)(yi − ȳ)∑

i(xi − x̄)2 β̂0 = ȳ − β̂1x̄

The sample variance of the residuals is

s2 =
1

n − 2

n∑
i=1

(yi − (β̂0 + β̂1xi))
2 (with df = n − 2).

100(1 − α)% confidence intervals:

β0 :

(
β̂0 − tα/2,n−2

s
√∑

i xi2√
n
∑

i(xi−x̄)
, β̂0 + tα/2,n−2

s
√∑

i xi2√
n
∑

i(xi−x̄)

)
β1 :

(
β̂1 − tα/2,n−2

s√∑
i(xi−x̄)

, β̂1 + tα/2,n−2
s√∑

i(xi−x̄)

)
y at new x : (ŷ − w, ŷ + w) with ŷ = β0 + β1x

and w = tα/2,n−2 · s ·
√

1 + 1
n +

(x−x̄)2∑
i(xi−x̄)2
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Covariance

Let X and Y be random variables, possibly dependent.
Let µX = E(X), µY = E(Y)

Var(X + Y) = E((X + Y − µX − µY)
2) = E

(((
X − µX

)
+
(
Y − µY

))2
)

= E
((

X − µX

)2
)
+ E

((
Y − µY

)2
)
+ 2E

(
(X − µX)(Y − µY)

)
= Var(X) + Var(Y) + 2 Cov(X, Y)

where the covariance of X and Y is defined as
Cov(X, Y) = E

(
(X − µX)(Y − µY)

)
= E(XY) − E(X)E(Y)

Independent variables have E(XY) = E(X)E(Y), so Cov(X, Y) = 0.
But Cov(X, Y) = 0 does not guarantee X and Y are independent.
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Covariance and independence

Independent variables have E(XY) = E(X)E(Y), so Cov(X, Y) = 0.
But Cov(X, Y) = 0 does not guarantee X and Y are independent.

Consider the standard normal distribution, Z.

Z and Z2 are dependent.

Cov(Z, Z2) = E(Z3) − E(Z)E(Z2).

The standard normal distribution has mean 0: E(Z) = 0.

E(Z3) = 0 since Z3 is an odd function and the pdf of Z is symmetric
around Z = 0.

So Cov(Z, Z2) = 0.
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Covariance properties

We have
Var(X + Y) = Var(X) + Var(Y) + 2 Cov(X, Y)

where the covariance of X and Y is defined as

Cov(X, Y) = E
(
(X − µX)(Y − µY)

)
= E(XY) − E(X)E(Y)

Additional properties of covariance
Cov(X, X) = Var(X)

Cov(X, Y) = Cov(Y, X)

Cov(aX + b, cY + d) = ac Cov(X, Y)
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Sign of covariance

Cov(X, Y) = E((X − µX)(Y − µY))

When Cov(X, Y) is positive:
There is a tendency to have X > µX when Y > µY and vice-versa,
and X < µX when Y < µY and vice-versa.

When Cov(X, Y) is negative:
There is a tendency to have X > µX when Y < µY and vice-versa,
and X < µX when Y > µY and vice-versa.

When Cov(X, Y) = 0:
a) X and Y might be independent, but it’s not guaranteed.
b) Var(X + Y) = Var(X) + Var(Y)
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Sample variance and covariance

Variance of a random variable:

σ2 = Var(X) = E((X − µX)
2) = E(X2) − (E(X))2

Sample variance from data x1, . . . , xn to estimate σ2:

s2 = var(x) =
1

n − 1

n∑
i=1

(xi − x̄)2 =
1

n − 1

(
n∑

i=1

xi
2

)
−

n
n − 1

x̄ 2

Covariance between random variables X, Y:

σXY = Cov(X, Y) = E((X − µX)(Y − µY)) = E(XY) − E(X)E(Y)

Sample covariance from data (x1, y1), . . . , (xn, yn) to estimate σXY:

sXY = cov(x, y) =
1

n − 1

n∑
i=1

(xi − x̄)(yi − ȳ) =
1

n − 1

(
n∑

i=1

xi yi

)
−

n
n − 1

x̄ ȳ
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Correlation coefficient

Let X and Y be two random variables.
Their correlation coefficient is

ρ(X, Y) =
Cov(X, Y)√
Var(X)Var(Y)

This is a normalized version of covariance, and is between ±1.
For a line Y = aX + b with a, b constants (a , 0),

ρ(X, Y) =
a Var(X)√

Var(X)
√

Var(aX)
=

aσ2

σ · |a|σ
=

a
|a|

= ±1 (sign of a)

ρ(X, Y) = ±1 iff Y = aX + b with a, b constants (a , 0).
Closer to ±1: more linear. Closer to 0: less linear.
If X and Y are independent then ρ(X, Y)=0.
The converse is not valid: dependent variables can have ρ(X, Y)=0.
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Correlation coefficient

ρ(X,Y) is estimated from data by the sample correlation coefficient
(a.k.a. Pearson product-moment correlation coefficient):

r(x, y) =
cov(x, y)√
var(x) var(y)

=

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
√∑

i(yi − ȳ)2

=
n
∑

i xiyi − (
∑

i xi)(
∑

i yi)√
n
∑

i xi
2 − (

∑
i xi)2

√
n
∑

i yi
2 − (

∑
i yi)2

People often report r2 (between 0 and 1) instead of r.
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Sample correlation coefficient r
1 0.8 0.4 0 -0.4 -0.8 -1

1 1 1 -1 -1 -1

0 0 0 0 0 0 0

http://en.wikipedia.org/wiki/File:Correlation_examples2.svg
http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient

Middle row: Perfect linear relation Y = aX + b gives
r = 1 for lines with positive slope (a > 0)
r = −1 for lines with negative slope (a < 0)
r undefined for horizontal line (Y = b)

Other rows: coming up!
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Interpretation of r2

Let ŷi = β̂1xi + β̂0
be the predicted y-value for xi based on the least squares line.
Write the deviation of yi from ȳ as

yi − ȳ = (yi − ŷi) + (ŷi − ȳ)
Total Unexplained Explained

deviation by line by line

It can be shown that the sum of squared deviations for all y’s is∑
i(yi − ȳ)2 =

∑
i(yi − ŷi)

2 +
∑

i(ŷi − ȳ)2 + 2
∑

i(yi − ŷi)(ŷi − ȳ)
Total Unexplained Explained = 0 by a miracle!

variation variation variation (Tedious algebra not shown)

and that

r2 =

∑
i(ŷi − ȳ)2∑
i(yi − ȳ)2 =

Explained variation
Total variation

r = 1: 100% of the variation is explained by the line and
0% is due to other factors, and the slope is positive.

r = −.8: 64% of the variation is explained by the line and
36% is due to other factors, and the slope is negative.
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Sample correlation coefficient r

1 0.8 0.4 0 -0.4 -0.8 -1

1 1 1 -1 -1 -1

0 0 0 0 0 0 0

http://en.wikipedia.org/wiki/File:Correlation_examples2.svg
http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient

Top row: Linear relations with varying r.
Bottom: r = 0, yet X and Y are dependent in all of these (except
possibly the last); it’s just that the relationship is not a line.
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Correlation does not imply causation
High correlation between X and Y doesn’t mean X causes Y or
vice-versa. It could be a coincidence. Or they could both be
caused by a third variable.
Website tylervigen.com plots many data sets (various quantities
by year) against each other to find spurious correlations:

http://www.tylervigen.com/view_correlation?id=1703 http://tylervigen.com/view_correlation?id=1759
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More about interpretation of correlation

Low r2 does NOT guarantee independence; it just means that a
line y = β0 + β1x is not a good fit to the data.

r is an estimate of ρ. The estimate improves with higher n.
With additional assumptions on the underlying joint distribution of
X, Y, we can use r to test

H0: ρ = 0 vs. H1: ρ , 0 (or other values).

Best fits and correlation generalize to other models, including

Polynomial regression y = β0 + β1 x + β2 x2 + · · ·+ βp x p

Multiple linear regression y = β0 + β1 t + β2 u + · · ·+ βp w

t, u, . . . , w: multiple independent variables
y: dependent variable

Weighted versions When the variance is different at each
value of the independent variables
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