11. Regression and Least Squares

Prof. Tesler

Math 186
Winter 2019

Regression

Given n points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots$, we want to determine a function $y=f(x)$ that is close to them.

Scatter plot of data (x, y)

Regression

Based on knowledge of the underlying problem or on plotting the data, you have an idea of the general form of the function, such as:

Line $y=\beta_{0}+\beta_{1} x$

Polynomial $y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}$

Exponential Decay $y=A e^{-B x}$ Logistic Curve $y=A /\left(1+B / C^{x}\right)$

Goal: Compute the parameters ($\beta_{0}, \beta_{1}, \ldots$ or A, B, C, \ldots) that give a "best fit" to the data.

Regression

- The methods we consider require the parameters to occur linearly. It is fine if (x, y) do not occur linearly.
E.g., plugging $(x, y)=(2,3)$ into $y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}$ gives $\quad 3=\beta_{0}+2 \beta_{1}+4 \beta_{2}+8 \beta_{3}$.
- For exponential decay, $y=A e^{-B x}$, parameter B does not occur linearly. Transform the equation to:

$$
\ln y=\ln (A)-B x=A^{\prime}-B x
$$

When we plug in (x, y) values, the parameters A^{\prime}, B occur linearly.

- Transform the logistic curve $y=A /\left(1+B / C^{x}\right)$ to:

$$
\ln \left(\frac{A}{y}-1\right)=\ln (B)-x \ln (C)=B^{\prime}+C^{\prime} x
$$

where A is determined from $A=\lim _{x \rightarrow \infty} y(x)$. Now B^{\prime}, C^{\prime} occur linearly.

Least squares fit to a line

Given n points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots$, we ${ }^{\times}$will fit them to a line $\hat{y}=\beta_{0}+\beta_{1} x$:

- Independent variable: x. We assume the x 's are known exactly or have negligible measurement errors.
- Dependent variable: y. We assume the y's depend on the x 's but fluctuate due to a random process.
- We do not have $y=f(x)$, but instead, $y=f(x)+$ error.

Least squares fit to a line

Given n points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots$, we will fit them to a line $\hat{y}=\beta_{0}+\beta_{1} x$:

Predicted y value (on the line):
Actual data (•):
Residual (actual y minus prediction): $\quad \epsilon_{i}=y_{i}-\hat{y}_{i}=y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)$

Least squares fit to a line

We will use the least squares method: pick parameters β_{0}, β_{1} that minimize the sum of squares of the residuals.

$$
L=\sum_{i=1}^{n}\left(y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right)^{2}
$$

Least squares fit to a line

$$
L=\sum_{i=1}^{n}\left(y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right)^{2}
$$

To find β_{0}, β_{1} that minimize this, solve $\nabla L=\left(\frac{\partial L}{\partial \beta_{0}}, \frac{\partial L}{\partial \beta_{1}}\right)=(0,0)$:

$$
\begin{array}{lll}
\frac{\partial L}{\partial \beta_{0}}=-2 \sum_{i=1}^{n}\left(y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right)=0 & \Rightarrow & n \beta_{0}+\left(\sum_{i=1}^{n} x_{i}\right) \beta_{1}=\sum_{i=1}^{n} y_{i} \\
\frac{\partial L}{\partial \beta_{1}}=-2 \sum_{i=1}^{n}\left(y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right) x_{i}=0 & \Rightarrow & \left(\sum_{i=1}^{n} x_{i}\right) \beta_{0}+\left(\sum_{i=1}^{n} x_{i}^{2}\right) \beta_{1}=\sum_{i=1}^{n} x_{i} y_{i}
\end{array}
$$

which has solution (all sums are $i=1$ to n)
$\beta_{1}=\frac{n\left(\sum_{i} x_{i} y_{i}\right)-\left(\sum_{i} x_{i}\right)\left(\sum_{i} y_{i}\right)}{n\left(\sum_{i} x_{i}^{2}\right)-\left(\sum_{i} x_{i}\right)^{2}}=\frac{\sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}} \quad \beta_{0}=\bar{y}-\beta_{1} \bar{x}$
Not shown: use 2nd derivatives to confirm it's a minimum rather than a maximum or saddle point.

Best fitting line

$$
y=\beta_{0}+\beta_{1} x+\varepsilon
$$

$$
x=\alpha_{0}+\alpha_{1} y+\varepsilon
$$

- The best fit for $y=\beta_{0}+\beta_{1} x+$ error or $x=\alpha_{0}+\alpha_{1} y+$ error give different lines!
- $y=\beta_{0}+\beta_{1} x+$ error assumes the x 's are known exactly with no errors, while the y's have errors.
- $x=\alpha_{0}+\alpha_{1} y+$ error is the other way around.

Total Least Squares / Principal Components Analysis

- In many experiments, both x and y have measurement errors.
- Use Total Least Squares or Principal Components Analysis, in which the residuals are measured perpendicular to the line.
- Details require advanced linear algebra, beyond Math 18.

Confidence intervals

$y=\beta_{0}+\beta_{1} x+\varepsilon$

- The best fit line - is different than the true line - .
- We found point estimates of β_{0} and β_{1}.
- Assuming errors are independent of x and normally distributed gives
- Confidence intervals for β_{0}, β_{1}.
- A prediction interval to extrapolate $y=f(x)$ at other x 's. Warning: it may diverge from the true line when we go out too far.
- Not shown: one can also do hypothesis tests on the values of β_{0} and β_{1}, and on whether two samples give the same line.

Confidence intervals

- The method of least squares gave point estimates of β_{0} and β_{1} :

$$
\hat{\beta}_{1}=\frac{n \sum_{i} x_{i} y_{i}-\left(\sum_{i} x_{i}\right)\left(\sum_{i} y_{i}\right)}{n\left(\sum_{i} x_{i}^{2}\right)-\left(\sum_{i} x_{i}\right)^{2}}=\frac{\sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}} \quad \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}
$$

- The sample variance of the residuals is

$$
s^{2}=\frac{1}{n-2} \sum_{i=1}^{n}\left(y_{i}-\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}\right)\right)^{2} \quad(\text { with } d f=n-2)
$$

- $100(1-\alpha) \%$ confidence intervals:

$$
\begin{aligned}
& \beta_{0}:\left(\hat{\beta}_{0}-t_{\alpha / 2, n-2} \frac{s \sqrt{\sum_{i} x_{i}^{2}}}{\sqrt{n \sum_{i}\left(x_{i}-\bar{x}\right)}}, \hat{\beta}_{0}+t_{\alpha / 2, n-2} \frac{s \sqrt{\sum_{i} x_{i}^{2}}}{\sqrt{n \sum_{i}\left(x_{i}-\bar{x}\right)}}\right) \\
& \beta_{1}:\left(\hat{\beta}_{1}-t_{\alpha / 2, n-2} \frac{s}{\sqrt{\sum_{i}\left(x_{i}-\bar{x}\right)}}, \hat{\beta}_{1}+t_{\alpha / 2, n-2} \frac{s}{\sqrt{\sum_{i}\left(x_{i}-\bar{x}\right)}}\right)
\end{aligned}
$$

y at new $x:(\hat{y}-w, \hat{y}+w)$ with $\hat{y}=\beta_{0}+\beta_{1} x$

$$
\text { and } w=t_{\alpha / 2, n-2} \cdot s \cdot \sqrt{1+\frac{1}{n}+\frac{(x-\bar{x})^{2}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}}
$$

Covariance

- Let X and Y be random variables, possibly dependent.
- Let $\mu_{X}=E(X), \mu_{Y}=E(Y)$
- $\operatorname{Var}(X+Y)=E\left(\left(X+Y-\mu_{X}-\mu_{Y}\right)^{2}\right)=E\left(\left(\left(X-\mu_{X}\right)+\left(Y-\mu_{Y}\right)\right)^{2}\right)$

$$
\begin{aligned}
& =E\left(\left(X-\mu_{X}\right)^{2}\right)+E\left(\left(Y-\mu_{Y}\right)^{2}\right)+2 E\left(\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right) \\
& =\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)
\end{aligned}
$$

where the covariance of X and Y is defined as

$$
\operatorname{Cov}(X, Y)=E\left(\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right)=E(X Y)-E(X) E(Y)
$$

- Independent variables have $E(X Y)=E(X) E(Y)$, so $\operatorname{Cov}(X, Y)=0$. But $\operatorname{Cov}(X, Y)=0$ does not guarantee X and Y are independent.

Covariance and independence

- Independent variables have $E(X Y)=E(X) E(Y)$, so $\operatorname{Cov}(X, Y)=0$. But $\operatorname{Cov}(X, Y)=0$ does not guarantee X and Y are independent.
- Consider the standard normal distribution, Z.
- Z and Z^{2} are dependent.
- $\operatorname{Cov}\left(Z, Z^{2}\right)=E\left(Z^{3}\right)-E(Z) E\left(Z^{2}\right)$.
- The standard normal distribution has mean $0: E(Z)=0$.
- $E\left(Z^{3}\right)=0$ since Z^{3} is an odd function and the pdf of Z is symmetric around $Z=0$.
- So $\operatorname{Cov}\left(Z, Z^{2}\right)=0$.

Covariance properties

We have

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)
$$

where the covariance of X and Y is defined as

$$
\operatorname{Cov}(X, Y)=E\left(\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right)=E(X Y)-E(X) E(Y)
$$

Additional properties of covariance

- $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$
- $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$
- $\operatorname{Cov}(a X+b, c Y+d)=a c \operatorname{Cov}(X, Y)$

Sign of covariance

$$
\operatorname{Cov}(X, Y)=E\left(\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right)
$$

- When $\operatorname{Cov}(X, Y)$ is positive:

There is a tendency to have $X>\mu_{X}$ when $Y>\mu_{Y}$ and vice-versa, and $X<\mu_{X}$ when $Y<\mu_{Y}$ and vice-versa.

- When $\operatorname{Cov}(X, Y)$ is negative:

There is a tendency to have $X>\mu_{X}$ when $Y<\mu_{Y}$ and vice-versa, and $X<\mu_{X}$ when $Y>\mu_{Y}$ and vice-versa.

- When $\operatorname{Cov}(X, Y)=0$:
a) X and Y might be independent, but it's not guaranteed.
b) $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Sample variance and covariance

Variance of a random variable:

$$
\sigma^{2}=\operatorname{Var}(X)=E\left(\left(X-\mu_{X}\right)^{2}\right)=E\left(X^{2}\right)-(E(X))^{2}
$$

Sample variance from data x_{1}, \ldots, x_{n} to estimate σ^{2} :

$$
s^{2}=\operatorname{var}(x)=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\frac{1}{n-1}\left(\sum_{i=1}^{n} x_{i}^{2}\right)-\frac{n}{n-1} \bar{x}^{2}
$$

Covariance between random variables X, Y :

$$
\sigma_{X Y}=\operatorname{Cov}(X, Y)=E\left(\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right)=E(X Y)-E(X) E(Y)
$$

Sample covariance from data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ to estimate $\sigma_{X Y}$:
$s_{X Y}=\operatorname{cov}(x, y)=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\frac{1}{n-1}\left(\sum_{i=1}^{n} x_{i} y_{i}\right)-\frac{n}{n-1} \bar{x} \bar{y}$

Correlation coefficient

Let X and Y be two random variables.
Their correlation coefficient is

$$
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

- This is a normalized version of covariance, and is between ± 1.
- For a line $Y=a X+b$ with a, b constants $(a \neq 0)$,

$$
\rho(X, Y)=\frac{a \operatorname{Var}(X)}{\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(a X)}}=\frac{a \sigma^{2}}{\sigma \cdot|a| \sigma}=\frac{a}{|a|}= \pm 1(\text { sign of } a)
$$

- $\rho(X, Y)= \pm 1$ iff $Y=a X+b$ with a, b constants $(a \neq 0)$.
- Closer to ± 1 : more linear. Closer to 0: less linear.
- If X and Y are independent then $\rho(X, Y)=0$.

The converse is not valid: dependent variables can have $\rho(X, Y)=0$.

Correlation coefficient

- $\rho(X, Y)$ is estimated from data by the sample correlation coefficient (a.k.a. Pearson product-moment correlation coefficient):

$$
\begin{aligned}
r(x, y)=\frac{\operatorname{cov}(x, y)}{\sqrt{\operatorname{var}(x) \operatorname{var}(y)}} & =\frac{\sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sum_{i}\left(y_{i}-\bar{y}\right)^{2}}} \\
& =\frac{n \sum_{i} x_{i} y_{i}-\left(\sum_{i} x_{i}\right)\left(\sum_{i} y_{i}\right)}{\sqrt{n \sum_{i} x_{i}^{2}-\left(\sum_{i} x_{i}\right)^{2}} \sqrt{n \sum_{i} y_{i}^{2}-\left(\sum_{i} y_{i}\right)^{2}}}
\end{aligned}
$$

- People often report r^{2} (between 0 and 1) instead of r.

Sample correlation coefficient r

0
http://en.wikipedia.org/wiki/File:Correlation_examples2.svg
http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient

- Middle row: Perfect linear relation $Y=a X+b$ gives
$r=1 \quad$ for lines with positive slope $(a>0)$
$r=-1 \quad$ for lines with negative slope $(a<0)$
r undefined for horizontal line $(Y=b)$
- Other rows: coming up!

Interpretation of r^{2}

- Let $\hat{y}_{i}=\hat{\beta}_{1} x_{i}+\hat{\beta}_{0}$
be the predicted y-value for x_{i} based on the least squares line.
- Write the deviation of y_{i} from \bar{y} as

$\underset{$| Total |
| :---: |
| deviation |$}{y_{i}-\bar{y}}=\underset{$| Unexplained |
| :---: |
| by line |$}{\left(y_{i}-\hat{y}_{i}\right)}+\underset{$| Explained |
| :---: |
| by line |$}{\left(\hat{y}_{i}-\bar{y}\right)}$

- It can be shown that the sum of squared deviations for all y's is

$$
\underset{\substack{\text { Total } \\ \text { variation }}}{\sum_{i}\left(y_{i}-\bar{y}\right)^{2}}=\underset{\substack{\text { Unexplained } \\ \text { variation }}}{\sum_{i}\left(y_{i}-\hat{y}_{i}\right)^{2}}+\underset{\substack{\text { Explained } \\ \text { variation }}}{\sum_{i}\left(\hat{y}_{i}-\bar{y}\right)^{2}}+\underset{\substack{\text { =0 by a miracle! } \\ \text { (Tedious algebra not shown) }}}{2 \sum_{i}\left(y_{i}-\hat{y}_{i}\right)\left(\hat{y}_{i}-\bar{y}\right)}
$$

and that

$$
r^{2}=\frac{\sum_{i}\left(\hat{y}_{i}-\bar{y}\right)^{2}}{\sum_{i}\left(y_{i}-\bar{y}\right)^{2}}=\frac{\text { Explained variation }}{\text { Total variation }}
$$

- $\quad r=1$: 100% of the variation is explained by the line and 0% is due to other factors, and the slope is positive.
- $r=-.8: 64 \%$ of the variation is explained by the line and 36% is due to other factors, and the slope is negative.

Sample correlation coefficient r

- Top row: Linear relations with varying r.
- Bottom: $r=0$, yet X and Y are dependent in all of these (except possibly the last); it's just that the relationship is not a line.

Correlation does not imply causation

- High correlation between X and Y doesn't mean X causes Y or vice-versa. It could be a coincidence. Or they could both be caused by a third variable.
- Website tylervigen.com plots many data sets (various quantities by year) against each other to find spurious correlations:

spurious correlations

Divorce rate in Maine
correlates with
Per capita consumption of margarine (US)

	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Divorce rate in Maine Divorces per 1000 people (US Census)	5	4.7	4.6	4.4	4.3	4.1	4.2	4.2	4.2	4.1
Per copita consumption of margarine (USS)	8.2	7	6.5	5.3	5.2	4	4.6	4.5	4.2	3.7
Correlation: 0.992558										

spurious correlations

Money spent on pets (US)

inversely correlates with
Per capita consumption of whole milk (US)

	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Billion of dollars (Aureau of Ecconomic Anctulysis (US)	39.7	41.9	44.6	46.8	49.8	53.1	56.9	61.8	65.7	67.1
Per capita consumption of whole mikik (USS) Collons (USOA)	7.7	7.4	7.3	7.2	7	6.6	6.5	6.1	5.9	5.7
Correlation: -0.995478										

More about interpretation of correlation

- Low r^{2} does NOT guarantee independence; it just means that a line $y=\beta_{0}+\beta_{1} x$ is not a good fit to the data.
- r is an estimate of ρ. The estimate improves with higher n. With additional assumptions on the underlying joint distribution of X, Y, we can use r to test

$$
H_{0}: \rho=0 \quad \text { vs. } \quad H_{1}: \rho \neq 0 \quad \text { (or other values). }
$$

- Best fits and correlation generalize to other models, including

$$
\text { Polynomial regression } \quad y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\cdots+\beta_{p} x^{p}
$$

Multiple linear regression $y=\beta_{0}+\beta_{1} t+\beta_{2} u+\cdots+\beta_{p} w$
t, u, \ldots, w : multiple independent variables y : dependent variable

Weighted versions

When the variance is different at each value of the independent variables

