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Multiplication rule

Combinatorics is a branch of Mathematics that deals with systematic
methods of counting things.

Example
How many outcomes (x, y, z) are possible, where

x= roll of a 6-sided die;
y= value of a coin flip;
z= card drawn from a 52 card deck?

(6 choices of x) × (2 choices of y) × (52 choices of z) = 624

Multiplication rule
The number of sequences (x1, x2, . . . , xk) where there are

n1 choices of x1, n2 choices of x2, . . . , nk choices of xk

is n1 · n2 · · · nk.
This assumes the number of choices of xi is a constant ni that doesn’t
depend on the other choices.
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Addition rule
Months and days

How many pairs (m, d) are there where
m= month 1, . . . , 12;
d = day of the month?

Assume it’s not a leap year.
12 choices of m, but the number of choices of d depends on m
(and if it’s a leap year), so the total is not “12× ”
Split dates into Am = { (m, d) : d is a valid day in month m }:

A = A1 ∪ · · · ∪ A12 = whole year
|A| = |A1|+ · · ·+ |A12|

= 31 + 28 + · · ·+ 31 = 365

Addition rule
If A1, . . . , An are mutually exclusive, then∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣ =
n∑

i=1

|Ai|
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Permutations of distinct objects
Here are all the permutations of A, B, C:

ABC ACB BAC BCA CAB CBA

There are 3 items: A, B, C.
There are 3 choices for which item to put first.
There are 2 choices remaining to put second.
There is 1 choice remaining to put third.
Thus, the total number of permutations is 3 · 2 · 1 = 6.

A CB

B BA AC C

C CB BA A

2nd letter

3rd letter

ACB BAC BCA CAB CBAABC

1st letter
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Permutations of distinct objects

In the example on the previous slide, the specific choices available
at each step depend on the previous steps, but the number of
choices does not, so the multiplication rule applies.
The number of permutations of n distinct items is “n-factorial”:
n! = n(n − 1)(n − 2) · · · 1 for integers n = 1, 2, . . .

Convention: 0! = 1
For integer n > 1, n!= n · (n − 1) · (n − 2) · · · 1

= n · (n − 1)!
so (n − 1)! = n!/n.
E.g., 2! = 3!/3 = 6/3 = 2.
Extend it to 0! = 1!/1 = 1/1 = 1.
Doesn’t extend to negative integers: (−1)! = 0!

0 = 1
0 = undefined.
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Stirling’s Approximation

In how many orders can a deck of 52 cards be shuffled?
52! = 8065817517094387857166063685640376

6975289505440883277824000000000000
(a 68 digit integer when computed exactly)

52! ≈ 8.0658 · 1067

Stirling’s Approximation: For large n,
n! ≈

√
2πn

(n
e

)n
.

Stirling’s approximation gives 52! ≈ 8.0529 · 1067
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Partial permutations of distinct objects

How many ways can you deal out 3 cards from a 52 card deck,
where the order in which the cards are dealt matters?
E.g., dealing the cards in order (A♣, 9♥, 2♦) is counted differently
than the order (2♦, A♣, 9♥).
52 · 51 · 50 = 132600. This is also 52!/49!.
This is called an ordered 3-card hand, because we keep track of
the order in which the cards are dealt.

How many ordered k-card hands can be dealt from an n-card deck?

n(n − 1)(n − 2) · · · (n − k + 1) =
n!

(n − k)!
= nPk

Above example is 52P3 = 52 · 51 · 50 = 132600.
This is also called permutations of length k taken from n objects.
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Combinations

In an unordered hand, the order in which the cards are dealt does
not matter; only the set of cards matters. E.g., dealing in order
(A♣, 9♥, 2♦) or (2♦, A♣, 9♥) both give the same hand. This is
usually represented by a set: {A♣, 9♥, 2♦}.
How many 3 card hands can be dealt from a 52-card deck if the
order in which the cards are dealt does not matter?
The 3-card hand {A♣, 9♥, 2♦} can be dealt in 3! = 6 different
orders:

(A♣, 9♥, 2♦) (9♥, A♣, 2♦) (2♦, 9♥, A♣)
(A♣, 2♦, 9♥) (9♥, 2♦, A♣) (2♦, A♣, 9♥)

Every unordered 3-card hand arises from 6 different orders.
So 52 · 51 · 50 counts each unordered hand 3! times; thus there are

52 · 51 · 50
3 · 2 · 1

=
52!/49!

3!
=

52P3

3!

unordered hands.
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Combinations

The # of unordered k-card hands taken from an n-card deck is

n · (n − 1) · (n − 2) · · · (n − k + 1)
k · (k − 1) · · · 2 · 1

=
(n)k

k!
=

n!
k! (n − k)!

This is denoted
(n

k

)
= n!

k! (n−k)! (or nCk, mostly on calculators).(n
k

)
is the “binomial coefficient” and is pronounced “n choose k.”

The number of unordered 3-card hands is(
52
3

)
= 52C3 = “52 choose 3” =

52 · 51 · 50
3 · 2 · 1

=
52!

3! 49!
= 22100

General problem: Let S be a set with n elements. The number of
k-element subsets of S is

(n
k

)
.

Special cases:
(n

0

)
=
(n

n

)
=1

(n
k

)
=
( n

n−k

) (n
1

)
=
( n

n−1

)
=n
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Binomial Theorem

(x + y)n =
∑n

k=0
(n

k

)
x ky n−k

For n = 4: (x + y)4 = (x + y)(x + y)(x + y)(x + y)

On expanding, each factor contributes an x or a y.
After expanding, we group, simplify, and collect like terms:

(x + y)4 = yyyy
+ yyyx + yyxy + yxyy + xyyy
+ yyxx + yxyx + yxxy + xyyx + xyxy + xxyy
+ yxxx + xyxx + xxyx + xxxy
+ xxxx

= y4 + 4xy3 + 6x2y2 + 4x3y + x4

Exponents of x and y must add up to n (which is 4 here).

For the coefficient of x k y n−k, there are
(n

k

)
ways to choose k

factors to contribute x’s. The other n − k factors contribute y’s.

Thus,
(n

k

)
unsimplified terms simplify to x k y n−k, giving

(n
k

)
x k y n−k.
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Permutations with repetitions

Here are all the permutations of the letters of ALLELE:

EEALLL EELALL EELLAL EELLLA EAELLL EALELL
EALLEL EALLLE ELEALL ELELAL ELELLA ELAELL
ELALEL ELALLE ELLEAL ELLELA ELLAEL ELLALE
ELLLEA ELLLAE AEELLL AELELL AELLEL AELLLE
ALEELL ALELEL ALELLE ALLEEL ALLELE ALLLEE
LEEALL LEELAL LEELLA LEAELL LEALEL LEALLE
LELEAL LELELA LELAEL LELALE LELLEA LELLAE
LAEELL LAELEL LAELLE LALEEL LALELE LALLEE
LLEEAL LLEELA LLEAEL LLEALE LLELEA LLELAE
LLAEEL LLAELE LLALEE LLLEEA LLLEAE LLLAEE

There are 60 of them, not 6! = 720, due to repeated letters.
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Permutations with repetitions

There are 6! = 720 ways to permute the subscripted letters
A1, L1, L2, E1, L3, E2.
Here are all the ways to put subscripts on EALLEL:

E1A1L1L2E2L3 E1A1L1L3E2L2 E2A1L1L2E1L3 E2A1L1L3E1L2

E1A1L2L1E2L3 E1A1L2L3E2L1 E2A1L2L1E1L3 E2A1L2L3E1L1

E1A1L3L1E2L2 E1A1L3L2E2L1 E2A1L3L1E1L2 E2A1L3L2E1L1

Each rearrangement of ALLELE has
1! = 1 way to subscript the A’s;
2! = 2 ways to subscript the E’s; and
3! = 6 ways to subscript the L’s,

giving 1! · 2! · 3! = 1 · 2 · 6 = 12 ways to assign subscripts.
Since each permutation of ALLELE is represented 12 different
ways in permutations of A1L1L2E1L3E2, the number of
permutations of ALLELE is

6!
1! 2! 3! =

720
12 = 60.
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Multinomial coefficients

For a word of length n with k1 of one letter, k2 of a 2nd letter, . . . ,
the number of permutations is given by the multinomial coefficient:(

n
k1, k2, . . . , kr

)
=

n!
k1! k2! · · · kr!

where n, k1, k2, . . . , kr are integers > 0 and n = k1 + · · ·+ kr.

For ALLELE, it’s
( 6

1,2,3

)
= 60. Read

( 6
1,2,3

)
as “6 choose 1, 2, 3.”

For a multinomial coefficient, the numbers on the bottom must add
up to the number on the top (n = k1 + · · ·+ kr), vs. for a binomial
coefficient

(n
k

)
, instead it’s 0 6 k 6 n.
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Multinomial Theorem
Binomial theorem: For integers n > 0,

(x + y)n =

n∑
k=0

(
n
k

)
xkyn−k

(x + y)3 =
(3

0

)
x0y3 +

(3
1

)
x1y2 +

(3
2

)
x2y1 +

(3
3

)
x3y0 = y3 + 3xy2 + 3x2y + x3

Multinomial theorem: For integers n > 0,

(x + y + z)n =

n∑
i=0

n∑
j=0

n∑
k=0︸         ︷︷         ︸

i+j+k=n

(
n

i, j, k

)
xiyjzk

(x + y + z)2 =
( 2

2,0,0

)
x2y0z0 +

( 2
0,2,0

)
x0y2z0 +

( 2
0,0,2

)
x0y0z2

+
( 2

1,1,0

)
x1y1z0 +

( 2
1,0,1

)
x1y0z1 +

( 2
0,1,1

)
x0y1z1

= x2 + y2 + z2 + 2xy + 2xz + 2yz

(x1 + · · ·+ xm)
n works similarly with m iterated sums.

In (x + y + z)10, the coefficient of x2y3z5 is
( 10

2,3,5

)
= 10!

2! 3! 5! = 2520

Prof. Tesler Combinatorics & Birthday Problem Math 186 / Winter 2020 14 / 29



Birthday Problem
a.k.a. Hash Collision Problem (in Computer Science)

Fun Party Fact
In a group of 23 or more randomly chosen people, there is over a 50%
chance that at least two of them share the same birthday.

General Setup
n days in a year. Ignore the concept of leap years.
k people.
Birthdays are uniform (each person has probability 1/n for each
possible day) and birthdays of different people are independent:

If your club has a party for everyone with a January birthday, the
people with January birthdays may be over-represented.
In a club for twins, the birthdays also would not be independent.

What’s the probability p that at least two people share a birthday?
Equivalently, compute q = 1 − p, the probability that all birthdays
are different.
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Probability all birthdays are different

Example: 3 people
First person has a unique birthday with probability n

n = 1.
Second person has a birthday different from the first with
probability n−1

n .
Given that the first two birthdays were different, the third person
has a birthday different from those with probability n−2

n .

q = n
n ·

n−1
n ·

n−2
n

General case

q =

k∏
r=1

P(rth birthday different from first r − 1
∣∣∣ first r − 1 distinct)

=

k∏
r=1

n − r + 1
n

=
n(n − 1)(n − 2) · · · (n − k + 1)

nk
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Probability all birthdays are different, 2nd derivation

The sample space is all k-tuples of integers 1, . . . , n:

S = { (x1, x2, . . . , xk) : 1 6 xi 6 n }

where the ith person has birthday xi. Note N(S) = nk.
E.g., number the days of the year 1, 2, . . . , 365.
(33, 2, 365) means the first person is born the 33rd day of the year
(Feb. 2), the second is born Jan. 2, the third is born Dec. 31.
Let A be the event that all birthdays are different.
N(A) = nPk = n(n − 1)(n − 2) . . . (n − k + 1)

P(A) = N(A)/N(S) = nPk
nk =

n(n−1)(n−2)...(n−k+1)
nk
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Probability all birthdays are different, approximation
We will also give an approximate formula for q:

q =
n
n
· n − 1

n
· n − 2

n
· · · n − k + 1

n
≈ exp

(
−

k2

2n

)
for k� n.

Question
How large a group of people is needed for at least a 90% chance that
at least two share a birthday?

Answer
p > 90% gives q = 1 − p 6 10%.
We could chug away the exact equation q = 365

365
364
365 · · ·

366−k
365 on a

calculator for k = 1, 2, 3, . . . until we get q < 10%.
Or we can solve for k from the approximate formula:

q≈exp
(
−

k2

2n

)
ln(q)≈−

k2

2n
k≈+

√
−2n ln(q) = +

√
−2n ln(1−p)

Note 1 − p < 1 so ln(1 − p) < 0 and −2n ln(1 − p) > 0.
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Probability all birthdays are different, approximation

q =
n
n
· n − 1

n
· n − 2

n
· · · n − k + 1

n
≈ exp

(
−

k2

2n

)
for k� n.

For at least a 90% chance that two people share a birthday, use
k = 41:

k q with exact formula q with approx formula
40 0.1087 0.1117
41 0.0968 0.0999

How about for p = 50%?

Party problem

q = 1 − p = .50 and k ≈
√
−2(365) ln(.50) = 22.49

In a group of 23 randomly selected people, there’s a
p ≈ 1 − exp(− 232

2(365) ) = 51.55% chance that two share a birthday.
(The exact formula gives p = 1 − 365

365
364
365 · · ·

343
365 ≈ 50.73%.)

In a group of 23 or more randomly selected people, there’s over a 50%
chance that two share a birthday.
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Varying the number of days in a year

Using k ≈
√

−2 ln(1 − p)
√

n gives

p k in n day year k in 365 day year
.5 1.18

√
n 23

.7 1.55
√

n 30
.9 2.15

√
n 41

.99 3.03
√

n 58

On the graphs that follow, we plot the exact probability formula.
First graph: 365 day year.
Second graph:

Multiple year sizes (n) are plotted.
We also superimpose the approximate probability formula in yellow.
x-axis is k/

√
n, so, for example, in most of the curves,

probability is ∼ 50% at k/
√

n ≈ 1.18
probability is ∼ 70% at k/

√
n ≈ 1.55.
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Derivation of approximation formula

Start from the exact formula
q =

n
n
· n − 1

n
· n − 2

n
· · · n − k + 1

n
Take the logarithm to convert the product to a sum:

ln(q) = ln
(

n
n
· n − 1

n
· n − 2

n
· · · n − k + 1

n

)
=

n∑
r=n−k+1

ln
( r

n

)
Trick: Multiply by 1 = n · 1

n and approximate it as an integral:

ln(q) = n
n∑

r=n−k+1

ln
( r

n

) 1
n
≈ n

∫ 1

1−k/n
ln(x) dx

Note: bounds are n−k
n = 1 − k

n and n
n = 1
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Derivation of approximation formula

ln(q) = n
n∑

r=n−k+1

ln
( r

n

) 1
n
≈ n

∫ 1

1−k/n
ln(x) dx

Example: n = 10, k = 7; sum is negative area indicated

Exact formula for ln(q) Approximate formula for ln(q)
10∑

r=4
ln( r

10)
1

10 = −0.280544...
∫1

.4 ln(x) dx = −0.233483...

0 0.2 0.4 0.6 0.8 1!4

!3

!2

!1

0

x

ln
(x
)

0 0.2 0.4 0.6 0.8 1!4

!3

!2

!1

0

x

ln
(x
)
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Derivation of approximation formula

ln(q) ≈ n
∫ 1

1−k/n
ln(x) dx = n

(
x
(
ln(x) − 1

))∣∣∣∣1
1−k/n

= n
(

1
(
ln(1) − 1

)
−
(
1 − k/n

)(
ln(1 − k/n) − 1

))
= n
(
−k/n − (1 − k/n)

(
ln(1 − k/n)

))
Using the Taylor series ln(1 − x) = −x − x2

2 − x3

3 − x4

4 − · · · gives

(1 − x) ln(1 − x) = −x +
x2

2 · 1
+

x3

3 · 2
+

x4

4 · 3
+ · · ·

Use this (with x = k/n) and plug into the approximation for ln(q).
The leading term is

ln(q) ≈ n
(
−

k
n
+

k
n
−

k2

2 · 1 · n2 −
k3

3 · 2n3 −
k4

4 · 3n4 − · · ·
)
≈ −

k2

2n
.

so p = 1 − q ≈ 1 − exp
(
− k2

2n

)
.

The graphs show this approximation is pretty good except for
small n. It’s possible to quantify the error analytically also.
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Searching for short DNA sequences
Alignment software (such as BLAST); Microarrays

Consider a genome:

Position 1 2 3 4 5 6 7 8 9 10 . . .
Nucleotide A C A A T G C A T G . . .

Pick a small value of `; we’ll use ` = 3.
Make a table of coordinates of all `-mers (length ` substrings):

3-mer coordinates 3-mer coordinates
AAT 3 CAA 2
ACA 1 CAT 7
ATG 4, 8 GCA 6

TGC 5
In a genome of length m, the coordinates of `-mers are
1, 2, . . . , m − `+ 1.

Birthday Problem This example
k = # people k = # coordinates = m − `+ 1
n = # days per year n = # `-mers = 4`
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Searching for short DNA sequences

Problem: Search for a short sequence Q (“query”) in a long genome T
(“text”). We’ll do lots of searches against the same T. In the popular
alignment software BLAST, T is a database of many genomes.

Strategy:
In advance: make a table of coordinates of all `-mers in T.
At search time: See which `-mers are in Q, and use that to find
possible locations in T where Q goes.

Given `: At what text length, m, is there ≈ 50% chance of a
collision between `-mers in T?

4` `-mers are possible.
There is ≈ 50% chance of a collision at ≈ 1.18

√
4` `-mers.

So m − `+ 1 ≈ 1.18
√

4`, or m ≈ 1.18 · 2` + `− 1.
Example with ` = 6:

m ≈ 1.18
√

46 + 6 − 1 = 80.52
probability is just below 50% at m = 80, just above at m = 81
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Searching for short DNA sequences

Given m: at what ` is there ≈ 50% chance of a collision between
`-mers in T?

The human genome is approximately 3 billion nucleotides long.
To account for both strands, use text size m = 6 billion.
The # `-mers in T is m − 2(`− 1), since we can’t start an `-mer at
the last `− 1 positions of either strand. This is ≈ m since `� m.
This is out of 4` `-mers total.
There is a 50% chance of collision when m ≈ 1.18

√
4`. Solve:

m
1.18

=
√

4` = 2` ` = log2(m/1.18)

So ` = log2(6,000,000,000/1.18) = 32.24.
The collision probability is above 50% for ` 6 32;

below 50% for ` > 33.
A specific text T might not be so random, however. The human
genome has lots of long repeated strings, some much longer than
this, as a result of duplication events in evolution.
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Hash Collision Problem in Computer Science
Generalizes the birthday problem to other scenarios

A hash function maps keys to values (a.k.a. buckets or codes):

f : Set of keys→ Set of values (or buckets)

There are n buckets. Assume that keys are independently assigned to
buckets with uniform probability 1

n per bucket.

Consider a subset of k keys. What is the probability of a collision (two
keys in the same bucket)?

Hash collision problem Keys Buckets
Birthday problem People Days of year
DNA sequence Coordinates `-mers

Note: `-mers in overlapping coordinate windows actually are
dependent. Assuming independence is an approximation.
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