# Combinatorics (2.6) The Birthday Problem (2.7) 

Prof. Tesler

Math 186
Winter 2020

## Multiplication rule

Combinatorics is a branch of Mathematics that deals with systematic methods of counting things.

## Example

- How many outcomes $(x, y, z)$ are possible, where $x=$ roll of a 6 -sided die; $y=$ value of a coin flip;
$z=$ card drawn from a 52 card deck?
- $(6$ choices of $x) \times(2$ choices of $y) \times(52$ choices of $z)=624$


## Multiplication rule

The number of sequences $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ where there are $n_{1}$ choices of $x_{1}, \quad n_{2}$ choices of $x_{2}, \quad \ldots, \quad n_{k}$ choices of $x_{k}$ is $n_{1} \cdot n_{2} \cdots n_{k}$.
This assumes the number of choices of $x_{i}$ is a constant $n_{i}$ that doesn't depend on the other choices.

## Addition rule

## Months and days

- How many pairs $(m, d)$ are there where

$$
\begin{aligned}
m & =\text { month } 1, \ldots, 12 \\
d & =\text { day of the month? }
\end{aligned}
$$

- Assume it's not a leap year.
- 12 choices of $m$, but the number of choices of $d$ depends on $m$ (and if it's a leap year), so the total is not " $12 \times \ldots$ "
- Split dates into $A_{m}=\{(m, d): d$ is a valid day in month $m\}$ :

$$
\begin{aligned}
A & =A_{1} \cup \cdots \cup A_{12}=\text { whole year } \\
|A| & =\left|A_{1}\right|+\cdots+\left|A_{12}\right| \\
& =31+28+\cdots+31=365
\end{aligned}
$$

## Addition rule

If $A_{1}, \ldots, A_{n}$ are mutually exclusive, then

$$
\left|\bigcup_{i=1}^{n} A_{i}\right|=\sum_{i=1}^{n}\left|A_{i}\right|
$$

## Permutations of distinct objects

Here are all the permutations of $A, B, C$ :

$$
A B C \quad A C B \quad B A C \quad B C A \quad C A B \quad C B A
$$

- There are 3 items: $A, B, C$.
- There are 3 choices for which item to put first.
- There are 2 choices remaining to put second.
- There is 1 choice remaining to put third.
- Thus, the total number of permutations is $3 \cdot 2 \cdot 1=6$.



## Permutations of distinct objects

- In the example on the previous slide, the specific choices available at each step depend on the previous steps, but the number of choices does not, so the multiplication rule applies.
- The number of permutations of $n$ distinct items is " $n$-factorial": $n!=n(n-1)(n-2) \cdots 1$ for integers $n=1,2, \ldots$


## Convention: $0!=1$

- For integer $n>1, \quad n!=n \cdot(n-1) \cdot(n-2) \cdots 1$

$$
=n \cdot(n-1)!
$$

$$
\text { so }(n-1)!=n!/ n \text {. }
$$

- E.g., $2!=3!/ 3=6 / 3=2$.
- Extend it to $0!=1!/ 1=1 / 1=1$.
- Doesn't extend to negative integers: $(-1)!=\frac{0!}{0}=\frac{1}{0}=$ undefined.


## Stirling's Approximation

- In how many orders can a deck of 52 cards be shuffled?
- $52!=8065817517094387857166063685640376$ 6975289505440883277824000000000000
(a 68 digit integer when computed exactly)
$52!\approx 8.0658 \cdot 10^{67}$
- Stirling's Approximation: For large $n$,

$$
n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

- Stirling's approximation gives $52!\approx 8.0529 \cdot 10^{67}$


## Partial permutations of distinct objects

- How many ways can you deal out 3 cards from a 52 card deck, where the order in which the cards are dealt matters?
E.g., dealing the cards in order $(A \&, 9 \triangleleft, 2 \diamond)$ is counted differently than the order $(2 \diamond, A \boldsymbol{\&}, 9 \diamond)$.
- $52 \cdot 51 \cdot 50=132600$. This is also 52!/49!.
- This is called an ordered 3-card hand, because we keep track of the order in which the cards are dealt.
- How many ordered $k$-card hands can be dealt from an $n$-card deck?

$$
n(n-1)(n-2) \cdots(n-k+1)=\frac{n!}{(n-k)!}={ }_{n} P_{k}
$$

Above example is ${ }_{52} P_{3}=52 \cdot 51 \cdot 50=132600$.

- This is also called permutations of length $k$ taken from $n$ objects.


## Combinations

- In an unordered hand, the order in which the cards are dealt does not matter; only the set of cards matters. E.g., dealing in order $(A \boldsymbol{\&}, 9 \diamond, 2 \diamond)$ or $(2 \diamond, A \&, 9 \diamond)$ both give the same hand. This is usually represented by a set: $\{A \boldsymbol{\AA}, 9 \checkmark, 2 \diamond\}$.
- How many 3 card hands can be dealt from a 52-card deck if the order in which the cards are dealt does not matter?
- The 3 -card hand $\{A \boldsymbol{\varrho}, 9 \checkmark, 2 \diamond\}$ can be dealt in $3!=6$ different orders:

$$
\begin{aligned}
& (A \boldsymbol{\ell}, 9 \diamond, 2 \diamond) \quad(9 \circlearrowleft, A \boldsymbol{\uparrow}, 2 \diamond) \quad(2 \diamond, 9 \diamond, A \boldsymbol{\phi}) \\
& (A \boldsymbol{\ell}, 2 \diamond, 9 \diamond) \quad(9 \diamond, 2 \diamond, A \boldsymbol{\phi}) \quad(2 \diamond, A \boldsymbol{母}, 9 \diamond)
\end{aligned}
$$

- Every unordered 3-card hand arises from 6 different orders. So $52 \cdot 51 \cdot 50$ counts each unordered hand 3 ! times; thus there are

$$
\frac{52 \cdot 51 \cdot 50}{3 \cdot 2 \cdot 1}=\frac{52!/ 49!}{3!}=\frac{{ }_{52} P_{3}}{3!}
$$

unordered hands.

## Combinations

- The \# of unordered $k$-card hands taken from an $n$-card deck is

$$
\frac{n \cdot(n-1) \cdot(n-2) \cdots(n-k+1)}{k \cdot(k-1) \cdots 2 \cdot 1}=\frac{(n)_{k}}{k!}=\frac{n!}{k!(n-k)!}
$$

- This is denoted $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ (or ${ }_{n} C_{k}$, mostly on calculators).
- ( $\binom{n}{k}$ is the "binomial coefficient" and is pronounced " $n$ choose $k$."
- The number of unordered 3-card hands is

$$
\binom{52}{3}={ }_{52} C_{3}=\text { "52 choose } 3 "=\frac{52 \cdot 51 \cdot 50}{3 \cdot 2 \cdot 1}=\frac{52!}{3!49!}=22100
$$

- General problem: Let $S$ be a set with $n$ elements. The number of $k$-element subsets of $S$ is $\binom{n}{k}$.
- Special cases: $\quad\binom{n}{0}=\binom{n}{n}=1 \quad\binom{n}{k}=\binom{n}{n-k} \quad\binom{n}{1}=\binom{n}{n-1}=n$


## Binomial Theorem

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

- For $n=4: \quad(x+y)^{4}=(x+y)(x+y)(x+y)(x+y)$
- On expanding, each factor contributes an $x$ or a $y$. After expanding, we group, simplify, and collect like terms:

$$
\begin{aligned}
(x+y)^{4}= & y y y y \\
& +y y y x+y y x y+y x y y+x y y y \\
& +y y x x+y x y x+y x x y+x y y x+x y x y+x x y y \\
& +y x x x+x y x x+x x y x+x x x y \\
& +x x x x \\
= & y^{4}+4 x y^{3}+6 x^{2} y^{2}+4 x^{3} y+x^{4}
\end{aligned}
$$

- Exponents of $x$ and $y$ must add up to $n$ (which is 4 here).
- For the coefficient of $x^{k} y^{n-k}$, there are $\binom{n}{k}$ ways to choose $k$ factors to contribute $x$ 's. The other $n-k$ factors contribute $y$ 's.
- Thus, $\binom{n}{k}$ unsimplified terms simplify to $x^{k} y^{n-k}$, giving $\binom{n}{k} x^{k} y^{n-k}$.


## Permutations with repetitions

Here are all the permutations of the letters of ALLELE:

| EEALLL | EELALL | EELLAL | EELLLA | EAELLL | EALELL |
| :--- | :--- | :--- | :--- | :--- | :--- |
| EALLEL | EALLLE | ELEALL | ELELAL | ELELLA | ELAELL |
| ELALEL | ELALLE | ELLEAL | ELLELA | ELLAEL | ELLALE |
| ELLLEA | ELLLAE | AEELLL | AELELL | AELLEL | AELLLE |
| ALEELL | ALELEL | ALELLE | ALLEEL | ALLELE | ALLLEE |
| LEEALL | LEELAL | LEELLA | LEAELL | LEALEL | LEALLE |
| LELEAL | LELELA | LELAEL | LELALE | LELLEA | LELLAE |
| LAEELL | LAELEL | LAELLE | LALEEL | LALELE | LALLEE |
| LLEEAL | LLEELA | LLEAEL | LLEALE | LLELEA | LLELAE |
| LLAEEL | LLAELE | LLALEE | LLLEEA | LLLEAE | LLLAEE |

There are 60 of them, not $6!=720$, due to repeated letters.

## Permutations with repetitions

- There are $6!=720$ ways to permute the subscripted letters $A_{1}, L_{1}, L_{2}, E_{1}, L_{3}, E_{2}$.
- Here are all the ways to put subscripts on EALLEL:

$$
\begin{array}{llll}
E_{1} A_{1} L_{1} L_{2} E_{2} L_{3} & E_{1} A_{1} L_{1} L_{3} E_{2} L_{2} & E_{2} A_{1} L_{1} L_{2} E_{1} L_{3} & E_{2} A_{1} L_{1} L_{3} E_{1} L_{2} \\
E_{1} A_{1} L_{2} L_{1} E_{2} L_{3} & E_{1} A_{1} L_{2} L_{3} E_{2} L_{1} & E_{2} A_{1} L_{2} L_{1} E_{1} L_{3} & E_{2} A_{1} L_{2} L_{3} E_{1} L_{1} \\
E_{1} A_{1} L_{3} L_{1} E_{2} L_{2} & E_{1} A_{1} L_{3} L_{2} E_{2} L_{1} & E_{2} A_{1} L_{3} L_{1} E_{1} L_{2} & E_{2} A_{1} L_{3} L_{2} E_{1} L_{1}
\end{array}
$$

- Each rearrangement of ALLELE has
- 1 ! = 1 way to subscript the A's;
- $2!=2$ ways to subscript the E's; and
- $3!=6$ ways to subscript the L's,
giving $1!\cdot 2!\cdot 3!=1 \cdot 2 \cdot 6=12$ ways to assign subscripts.
- Since each permutation of ALLELE is represented 12 different ways in permutations of $A_{1} L_{1} L_{2} E_{1} L_{3} E_{2}$, the number of permutations of ALLELE is

$$
\frac{6!}{1!2!3!}=\frac{720}{12}=60
$$

## Multinomial coefficients

- For a word of length $n$ with $k_{1}$ of one letter, $k_{2}$ of a $2^{\text {nd }}$ letter, $\ldots$, the number of permutations is given by the multinomial coefficient:

$$
\binom{n}{k_{1}, k_{2}, \ldots, k_{r}}=\frac{n!}{k_{1}!k_{2}!\cdots k_{r}!}
$$

where $n, k_{1}, k_{2}, \ldots, k_{r}$ are integers $\geqslant 0$ and $n=k_{1}+\cdots+k_{r}$.

- For ALLELE, it's $\left(\begin{array}{c}6,2,3\end{array}\right)=60$. Read $\binom{6}{1,2,3}$ as " 6 choose $1,2,3$."
- For a multinomial coefficient, the numbers on the bottom must add up to the number on the top ( $n=k_{1}+\cdots+k_{r}$ ), vs. for a binomial coefficient $\binom{n}{k}$, instead it's $0 \leqslant k \leqslant n$.


## Multinomial Theorem

- Binomial theorem: For integers $n \geqslant 0$,

$$
\begin{gathered}
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} \\
(x+y)^{3}=\binom{3}{0} x^{0} y^{3}+\binom{3}{1} x^{1} y^{2}+\binom{3}{2} x^{2} y^{1}+\binom{3}{3} x^{3} y^{0}=y^{3}+3 x y^{2}+3 x^{2} y+x^{3}
\end{gathered}
$$

- Multinomial theorem: For integers $n \geqslant 0$,

$$
\begin{gathered}
(x+y+z)^{n}=\underbrace{\sum_{i=0}^{n} \sum_{j=0}^{n} \sum_{k=0}^{n}}_{i+j+k=n}\binom{n}{i, j, k} x^{i} y^{j} z^{k} \\
(x+y+z)^{2}=\binom{2}{2,0,0} x^{2} y^{0} z^{0}+\binom{2}{0,2,0} x^{0} y^{2} z^{0}+\binom{2}{0,0,2} x^{0} y^{0} z^{2} \\
\\
+\left(\begin{array}{c}
1,1,0
\end{array}\right) x^{1} y^{1} z^{0}+\binom{2}{1,0,1} x^{1} y^{0} z^{1}+\left({ }_{0,1,1}^{2}\right) x^{0} y^{1} z^{1}
\end{gathered}
$$

$\left(x_{1}+\cdots+x_{m}\right)^{n}$ works similarly with $m$ iterated sums.

- In $(x+y+z)^{10}$, the coefficient of $x^{2} y^{3} z^{5}$ is $\binom{10}{2,3,5}=\frac{10!}{2!3!5!}=2520$


## Birthday Problem

a.k.a. Hash Collision Problem (in Computer Science)

## Fun Party Fact

In a group of 23 or more randomly chosen people, there is over a 50\% chance that at least two of them share the same birthday.

## General Setup

- $n$ days in a year. Ignore the concept of leap years.
- $k$ people.
- Birthdays are uniform (each person has probability $1 / n$ for each possible day) and birthdays of different people are independent:
- If your club has a party for everyone with a January birthday, the people with January birthdays may be over-represented.
- In a club for twins, the birthdays also would not be independent.
- What's the probability $p$ that at least two people share a birthday? Equivalently, compute $q=1-p$, the probability that all birthdays are different.


## Probability all birthdays are different

## Example: 3 people

- First person has a unique birthday with probability $\frac{n}{n}=1$.
- Second person has a birthday different from the first with probability $\frac{n-1}{n}$.
- Given that the first two birthdays were different, the third person has a birthday different from those with probability $\frac{n-2}{n}$.
- $q=\frac{n}{n} \cdot \frac{n-1}{n} \cdot \frac{n-2}{n}$


## General case

$$
\begin{aligned}
q & =\prod_{r=1}^{k} P(r \text { th birthday different from first } r-1 \mid \text { first } r-1 \text { distinct }) \\
& =\prod_{r=1}^{k} \frac{n-r+1}{n}=\frac{n(n-1)(n-2) \cdots(n-k+1)}{n^{k}}
\end{aligned}
$$

## Probability all birthdays are different, 2nd derivation

- The sample space is all $k$-tuples of integers $1, \ldots, n$ :

$$
S=\left\{\left(x_{1}, x_{2}, \ldots, x_{k}\right): 1 \leqslant x_{i} \leqslant n\right\}
$$

where the $i$ th person has birthday $x_{i}$. Note $N(S)=n^{k}$.

- E.g., number the days of the year $1,2, \ldots, 365$.
$(33,2,365)$ means the first person is born the 33rd day of the year
(Feb. 2), the second is born Jan. 2, the third is born Dec. 31.
- Let $A$ be the event that all birthdays are different.
- $N(A)={ }_{n} P_{k}=n(n-1)(n-2) \ldots(n-k+1)$
- $P(A)=N(A) / N(S)=\frac{{ }_{n} P_{k}}{n^{k}}=\frac{n(n-1)(n-2) \ldots(n-k+1)}{n^{k}}$


## Probability all birthdays are different, approximation

We will also give an approximate formula for $q$ :

$$
q=\frac{n}{n} \cdot \frac{n-1}{n} \cdot \frac{n-2}{n} \cdots \frac{n-k+1}{n} \quad \approx \exp \left(-\frac{k^{2}}{2 n}\right) \quad \text { for } k \ll n
$$

## Question

How large a group of people is needed for at least a 90\% chance that at least two share a birthday?

## Answer

- $p \geqslant 90 \%$ gives $q=1-p \leqslant 10 \%$.
- We could chug away the exact equation $q=\frac{365}{365} \frac{364}{365} \cdots \frac{366-k}{365}$ on a calculator for $k=1,2,3, \ldots$ until we get $q<10 \%$.
- Or we can solve for $k$ from the approximate formula:

$$
q \approx \exp \left(-\frac{k^{2}}{2 n}\right) \quad \ln (q) \approx-\frac{k^{2}}{2 n} \quad k \approx+\sqrt{-2 n \ln (q)}=+\sqrt{-2 n \ln (1-p)}
$$

- Note $1-p<1$ so $\ln (1-p)<0$ and $-2 n \ln (1-p)>0$.


## Probability all birthdays are different, approximation

$$
q=\frac{n}{n} \cdot \frac{n-1}{n} \cdot \frac{n-2}{n} \cdots \frac{n-k+1}{n} \quad \approx \exp \left(-\frac{k^{2}}{2 n}\right) \quad \text { for } k \ll n
$$

- For at least a $90 \%$ chance that two people share a birthday, use $k=41$ :
$k \quad q$ with exact formula $\quad q$ with approx formula

| 40 | 0.1087 | 0.1117 |
| :--- | :--- | :--- |
| 41 | 0.0968 | 0.0999 |

- How about for $p=50 \%$ ?


## Party problem

- $q=1-p=.50 \quad$ and $\quad k \approx \sqrt{-2(365) \ln (.50)}=22.49$
- In a group of 23 randomly selected people, there's a $p \approx 1-\exp \left(-\frac{23^{2}}{2(365)}\right)=51.55 \%$ chance that two share a birthday. (The exact formula gives $p=1-\frac{365}{365} \frac{364}{365} \cdots \frac{343}{365} \approx 50.73 \%$.)
- In a group of 23 or more randomly selected people, there's over a $50 \%$ chance that two share a birthday.


## Varying the number of days in a year

- Using $k \approx \sqrt{-2 \ln (1-p)} \sqrt{n}$ gives
$p \quad k$ in $n$ day year $\quad k$ in 365 day year

| .5 | $1.18 \sqrt{n}$ | 23 |
| :--- | :--- | :--- |
| .7 | $1.55 \sqrt{n}$ | 30 |
| .9 | $2.15 \sqrt{n}$ | 41 |
| .99 | $3.03 \sqrt{n}$ | 58 |

- On the graphs that follow, we plot the exact probability formula.
- First graph: 365 day year.
- Second graph:
- Multiple year sizes ( $n$ ) are plotted.
- We also superimpose the approximate probability formula in yellow.
- $x$-axis is $k / \sqrt{n}$, so, for example, in most of the curves, probability is $\sim 50 \%$ at $k / \sqrt{n} \approx 1.18$
probability is $\sim 70 \%$ at $k / \sqrt{n} \approx 1.55$.

Birthday problem for 365 day year


Birthday problem for different sized years


## Derivation of approximation formula

- Start from the exact formula

$$
q=\frac{n}{n} \cdot \frac{n-1}{n} \cdot \frac{n-2}{n} \cdots \frac{n-k+1}{n}
$$

- Take the logarithm to convert the product to a sum:

$$
\ln (q)=\ln \left(\frac{n}{n} \cdot \frac{n-1}{n} \cdot \frac{n-2}{n} \cdots \frac{n-k+1}{n}\right)=\sum_{r=n-k+1}^{n} \ln \left(\frac{r}{n}\right)
$$

- Trick: Multiply by $1=n \cdot \frac{1}{n}$ and approximate it as an integral:

$$
\ln (q)=n \sum_{r=n-k+1}^{n} \ln \left(\frac{r}{n}\right) \frac{1}{n} \approx n \int_{1-k / n}^{1} \ln (x) d x
$$

Note: bounds are $\frac{n-k}{n}=1-\frac{k}{n}$ and $\frac{n}{n}=1$

## Derivation of approximation formula

$$
\ln (q)=n \sum_{r=n-k+1}^{n} \ln \left(\frac{r}{n}\right) \frac{1}{n} \approx n \int_{1-k / n}^{1} \ln (x) d x
$$

## Example: $n=10, k=7$; sum is negative area indicated

Exact formula for $\boldsymbol{\operatorname { l n }}(\boldsymbol{q})$
$\sum_{r=4}^{10} \ln \left(\frac{r}{10}\right) \frac{1}{10}=-0.280544 \ldots$


Approximate formula for $\ln (\boldsymbol{q})$
$\int_{.4}^{1} \ln (x) d x=-0.233483 \ldots$


## Derivation of approximation formula

$$
\begin{aligned}
\ln (q) & \approx n \int_{1-k / n}^{1} \ln (x) d x=\left.n(x(\ln (x)-1))\right|_{1-k / n} ^{1} \\
& =n(1(\ln (1)-1)-(1-k / n)(\ln (1-k / n)-1)) \\
& =n(-k / n-(1-k / n)(\ln (1-k / n)))
\end{aligned}
$$

- Using the Taylor series $\ln (1-x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\cdots$ gives

$$
(1-x) \ln (1-x)=-x+\frac{x^{2}}{2 \cdot 1}+\frac{x^{3}}{3 \cdot 2}+\frac{x^{4}}{4 \cdot 3}+\cdots
$$

- Use this (with $x=k / n$ ) and plug into the approximation for $\ln (q)$. The leading term is

$$
\ln (q) \approx n\left(-\frac{k}{n}+\frac{k}{n}-\frac{k^{2}}{2 \cdot 1 \cdot n^{2}}-\frac{k^{3}}{3 \cdot 2 n^{3}}-\frac{k^{4}}{4 \cdot 3 n^{4}}-\cdots\right) \approx-\frac{k^{2}}{2 n} .
$$

$$
\text { so } p=1-q \approx 1-\exp \left(-\frac{k^{2}}{2 n}\right)
$$

- The graphs show this approximation is pretty good except for small $n$. It's possible to quantify the error analytically also.


## Searching for short DNA sequences

## Alignment software (such as BLAST); Microarrays

Consider a genome:

| Position | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | $\ldots$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Nucleotide | A | C | A | A | T | G | C | A | T | G | $\ldots$ |

- Pick a small value of $\ell$; we'll use $\ell=3$.
- Make a table of coordinates of all $\ell$-mers (length $\ell$ substrings):
3-mer coordinates 3-mer coordinates

| AAT | 3 | CAA | 2 |
| :--- | :---: | :---: | :---: |
| ACA | 1 | CAT | 7 |
| ATG | 4,8 | GCA | 6 |
|  |  | TGC | 5 |

- In a genome of length $m$, the coordinates of $\ell$-mers are $1,2, \ldots, m-\ell+1$.


## Birthday Problem

$k=$ \# people
$k=\#$ coordinates $=m-\ell+1$
$n=$ \# days per year
$n=\# \ell$-mers $=4^{\ell}$

## Searching for short DNA sequences

Problem: Search for a short sequence $Q$ ("query") in a long genome $T$ ("text"). We'll do lots of searches against the same $T$. In the popular alignment software BLAST, $T$ is a database of many genomes.

## Strategy:

- In advance: make a table of coordinates of all $\ell$-mers in $T$.
- At search time: See which $\ell$-mers are in $Q$, and use that to find possible locations in $T$ where $Q$ goes.

Given $\ell$ : At what text length, $m$, is there $\approx 50 \%$ chance of a collision between $\ell$-mers in $T$ ?

- $4^{l} \ell$-mers are possible.
- There is $\approx 50 \%$ chance of a collision at $\approx 1.18 \sqrt{4^{\ell}} \quad \ell$-mers. So $m-\ell+1 \approx 1.18 \sqrt{4^{\ell}}$, or $m \approx 1.18 \cdot 2^{\ell}+\ell-1$.
- Example with $\ell=6$ :

$$
m \approx 1.18 \sqrt{4^{6}}+6-1=80.52
$$

probability is just below $50 \%$ at $m=80$, just above at $m=81$

## Searching for short DNA sequences

Given $m$ : at what $\ell$ is there $\approx \mathbf{5 0 \%}$ chance of a collision between $\ell$-mers in $T$ ?

- The human genome is approximately 3 billion nucleotides long. To account for both strands, use text size $m=6$ billion.
- The \# $\ell$-mers in $T$ is $m-2(\ell-1)$, since we can't start an $\ell$-mer at the last $\ell-1$ positions of either strand. This is $\approx m$ since $\ell \ll m$.
- This is out of $4^{\ell} \ell$-mers total.
- There is a $50 \%$ chance of collision when $m \approx 1.18 \sqrt{4^{\ell}}$. Solve:

$$
\frac{m}{1.18}=\sqrt{4^{\ell}}=2^{\ell} \quad \ell=\log _{2}(m / 1.18)
$$

So $\ell=\log _{2}(6,000,000,000 / 1.18)=32.24$.

- The collision probability is above $50 \%$ for $\ell \leqslant 32$; below $50 \%$ for $\ell \geqslant 33$.
- A specific text $T$ might not be so random, however. The human genome has lots of long repeated strings, some much longer than this, as a result of duplication events in evolution.


## Hash Collision Problem in Computer Science

 Generalizes the birthday problem to other scenariosA hash function maps keys to values (a.k.a. buckets or codes):

$$
f: \text { Set of keys } \rightarrow \text { Set of values (or buckets) }
$$

There are $n$ buckets. Assume that keys are independently assigned to buckets with uniform probability $\frac{1}{n}$ per bucket.

Consider a subset of $k$ keys. What is the probability of a collision (two keys in the same bucket)?

## Hash collision problem Birthday problem DNA sequence

Keys<br>People<br>Coordinates

Buckets
Days of year
$\ell$-mers
Note: $\ell$-mers in overlapping coordinate windows actually are dependent. Assuming independence is an approximation.

