Estimating parameters of the normal distribution \((\mu, \sigma)\) or the binomial distribution \((p)\) from data

We will assume throughout that the SAT math test was designed to have a normal distribution.

Secretly, \(\mu = 500\) and \(\sigma = 100\), but we don’t know those are the values so we want to estimate them from data.

- **Chapter 5.3:** Pretend we know \(\sigma\) but not \(\mu\) and we want to estimate \(\mu\) from experimental data.
- **Chapter 5.4:** Estimate both \(\mu\) and \(\sigma\) from experimental data.
5.3 Estimating parameters from data

Basic experiment

1. Sample n random students from the whole population of SAT takers. The scores of these students are x_1, \ldots, x_n.

2. Compute the **sample mean** of these scores:

 $$ m = \bar{x} = \frac{x_1 + \cdots + x_n}{n} $$

 The sample mean is a **point estimate** of μ; it just gives one number, without an indication of how far away it might be from μ.

3. Repeat the above with many independent samples, getting different sample means each time.

The long-term average of the sample means will be approximately

$$ E(\bar{X}) = E \left(\frac{X_1 + \cdots + X_n}{n} \right) = \frac{\mu + \cdots + \mu}{n} = \frac{n\mu}{n} = \mu $$

These estimates will be distributed with variance $\text{Var}(\bar{X}) = \sigma^2/n$.
Sample data

<table>
<thead>
<tr>
<th>Trial #</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>$m = \bar{x}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>720</td>
<td>490</td>
<td>660</td>
<td>520</td>
<td>390</td>
<td>390</td>
<td>528.33</td>
</tr>
<tr>
<td>2</td>
<td>380</td>
<td>260</td>
<td>390</td>
<td>630</td>
<td>540</td>
<td>440</td>
<td>440.00</td>
</tr>
<tr>
<td>3</td>
<td>800</td>
<td>450</td>
<td>580</td>
<td>520</td>
<td>650</td>
<td>390</td>
<td>565.00</td>
</tr>
<tr>
<td>4</td>
<td>510</td>
<td>370</td>
<td>530</td>
<td>290</td>
<td>460</td>
<td>540</td>
<td>450.00</td>
</tr>
<tr>
<td>5</td>
<td>580</td>
<td>500</td>
<td>540</td>
<td>540</td>
<td>340</td>
<td>340</td>
<td>473.33</td>
</tr>
<tr>
<td>6</td>
<td>500</td>
<td>490</td>
<td>480</td>
<td>550</td>
<td>390</td>
<td>450</td>
<td>476.67</td>
</tr>
<tr>
<td>7</td>
<td>530</td>
<td>680</td>
<td>540</td>
<td>510</td>
<td>520</td>
<td>590</td>
<td>561.67</td>
</tr>
<tr>
<td>8</td>
<td>480</td>
<td>600</td>
<td>520</td>
<td>600</td>
<td>520</td>
<td>390</td>
<td>518.33</td>
</tr>
<tr>
<td>9</td>
<td>340</td>
<td>520</td>
<td>500</td>
<td>650</td>
<td>400</td>
<td>530</td>
<td>490.00</td>
</tr>
<tr>
<td>10</td>
<td>460</td>
<td>450</td>
<td>500</td>
<td>360</td>
<td>600</td>
<td>440</td>
<td>468.33</td>
</tr>
<tr>
<td>11</td>
<td>540</td>
<td>520</td>
<td>360</td>
<td>500</td>
<td>520</td>
<td>640</td>
<td>513.33</td>
</tr>
<tr>
<td>12</td>
<td>440</td>
<td>420</td>
<td>610</td>
<td>530</td>
<td>490</td>
<td>570</td>
<td>510.00</td>
</tr>
<tr>
<td>13</td>
<td>520</td>
<td>570</td>
<td>430</td>
<td>320</td>
<td>650</td>
<td>540</td>
<td>505.00</td>
</tr>
<tr>
<td>14</td>
<td>560</td>
<td>380</td>
<td>440</td>
<td>610</td>
<td>680</td>
<td>460</td>
<td>521.67</td>
</tr>
<tr>
<td>15</td>
<td>460</td>
<td>590</td>
<td>350</td>
<td>470</td>
<td>420</td>
<td>740</td>
<td>505.00</td>
</tr>
<tr>
<td>16</td>
<td>430</td>
<td>490</td>
<td>370</td>
<td>350</td>
<td>360</td>
<td>470</td>
<td>411.67</td>
</tr>
<tr>
<td>17</td>
<td>570</td>
<td>610</td>
<td>460</td>
<td>410</td>
<td>550</td>
<td>510</td>
<td>518.33</td>
</tr>
<tr>
<td>18</td>
<td>380</td>
<td>540</td>
<td>570</td>
<td>400</td>
<td>360</td>
<td>500</td>
<td>458.33</td>
</tr>
<tr>
<td>19</td>
<td>410</td>
<td>730</td>
<td>480</td>
<td>600</td>
<td>270</td>
<td>320</td>
<td>468.33</td>
</tr>
<tr>
<td>20</td>
<td>490</td>
<td>390</td>
<td>450</td>
<td>610</td>
<td>320</td>
<td>440</td>
<td>450.00</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>491.67</td>
</tr>
</tbody>
</table>
Sample mean notation

Variable names

<table>
<thead>
<tr>
<th>Actual distribution (Greek letters)</th>
<th>Point estimate from a sample (Latin letters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X): random variable</td>
<td>(x_1, \ldots, x_n): sample data</td>
</tr>
<tr>
<td>(\mu): mean</td>
<td>(m) or (\bar{x}): sample mean</td>
</tr>
<tr>
<td>(\sigma^2): variance</td>
<td>(s^2): sample variance</td>
</tr>
<tr>
<td>(\sigma): standard deviation</td>
<td>(s): sample standard deviation</td>
</tr>
</tbody>
</table>

Lowercase/Uppercase

- **Lowercase**: Given specific numbers \(x_1, \ldots, x_n \), the sample mean evaluates to a number as well.

- **Uppercase**: We will study performing this computation repeatedly with different data, treating the data \(X_1, \ldots, X_n \) as random variables. This makes the sample mean a random variable.

\[
m = \bar{x} = \frac{x_1 + \cdots + x_n}{n} \quad M = \bar{X} = \frac{X_1 + \cdots + X_n}{n}
\]
Z-scores

- How often is the sample mean “close” to the secret value of μ?

- The sample mean is a random variable \overline{X} with mean $E(\overline{X}) = \mu$ and standard deviation $SD(\overline{X}) = \sigma/\sqrt{n}$. So

 $$z = \frac{m - \mu}{\sigma/\sqrt{n}}$$

 if we knew secret: $= \frac{m - 500}{100/\sqrt{n}}$

- Exclude the top 2.5% and bottom 2.5% of values of Z and regard the middle 95% as “close.” So

 $$P(-z_{0.025} \leq Z \leq z_{0.025}) = P(-1.96 \leq Z \leq 1.96) = .95$$
Confidence intervals

- We will rearrange this equation to isolate \(\mu \):
 \[
P(-1.96 \leq Z \leq 1.96) = P(-1.96 \leq \frac{M - \mu}{\sigma/\sqrt{n}} \leq 1.96) = .95
 \]

- **Interpretation:** in \(\approx 95\% \) of the trials of this experiment, the value \(M = m \) satisfies
 \[
 -1.96 \leq \frac{m - \mu}{\sigma/\sqrt{n}} \leq 1.96
 \]

- Solve for bounds on \(\mu \) from the upper limit on \(Z \):
 \[
 \frac{m - \mu}{\sigma/\sqrt{n}} \leq 1.96 \iff m - \mu \leq 1.96 \frac{\sigma}{\sqrt{n}} \iff m - 1.96 \frac{\sigma}{\sqrt{n}} \leq \mu
 \]
 Notice the 1.96 turned into \(-1.96\) and we get a lower limit on \(\mu \).

- Also solve for an upper bound on \(\mu \) from the lower limit on \(Z \):
 \[
 -1.96 \leq \frac{m - \mu}{\sigma/\sqrt{n}} \iff -1.96 \frac{\sigma}{\sqrt{n}} \leq m - \mu \iff \mu \leq m + 1.96 \frac{\sigma}{\sqrt{n}}
 \]

- Together,
 \[
 m - 1.96 \frac{\sigma}{\sqrt{n}} \leq \mu \leq m + 1.96 \frac{\sigma}{\sqrt{n}}
 \]
Confidence intervals

In $\approx 95\%$ of the trials of this experiment, the value $M = m$ satisfies

$$m - 1.96 \frac{\sigma}{\sqrt{n}} \leq \mu \leq m + 1.96 \frac{\sigma}{\sqrt{n}}$$

So, 95\% of the time we perform this experiment, the true mean μ is in the interval

$$\left(m - 1.96 \frac{\sigma}{\sqrt{n}}, m + 1.96 \frac{\sigma}{\sqrt{n}}\right)$$

which is called a (two-sided) 95\% confidence interval.

For a $100(1 - \alpha)\%$ C.I., use $\pm z_{\alpha/2}$ instead of ± 1.96.

Other commonly used percentages:
For a 99\% confidence interval, use ± 2.58 instead of ± 1.96.
For a 90\% confidence interval, use ± 1.64 instead of ± 1.96.

For demo purposes:
For a 75\% confidence interval, use ± 1.15 instead of ± 1.96.
Example: Six scores 380, 260, 390, 630, 540, 440

Sample mean: \[m = \frac{380 + 260 + 390 + 630 + 540 + 440}{6} = 440 \]

\[\sigma: \text{ We assumed } \sigma = 100 \text{ at the beginning } \]

95% CI half-width: \[1.96 \frac{\sigma}{\sqrt{n}} = \frac{(1.96)(100)}{\sqrt{6}} \approx 80.02 \]

95% CI:
\[(440 - 80.02, 440 + 80.02) = (359.98, 520.02) \]

Has the true mean, \(\mu = 500 \).

75% CI half-width: \[1.15 \frac{\sigma}{\sqrt{n}} = \frac{(1.15)(100)}{\sqrt{6}} \approx 46.95 \]

75% CI:
\[(440 - 46.95, 440 + 46.95) = (393.05, 486.95) \]

Doesn’t have the true mean, \(\mu = 500 \).
Confidence intervals

$\sigma = 100$ known, $\mu = 500$ unknown, $n = 6$ points per trial, 20 trials

Confidence intervals not containing point $\mu = 500$ are marked [93.05,486.95]*.

<table>
<thead>
<tr>
<th>Trial #</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>$m = \bar{x}$</th>
<th>75% conf. int.</th>
<th>95% conf. int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>720</td>
<td>490</td>
<td>660</td>
<td>520</td>
<td>390</td>
<td>390</td>
<td>528.33</td>
<td>(481.38,575.28)</td>
<td>(448.32,608.35)</td>
</tr>
<tr>
<td>2</td>
<td>380</td>
<td>260</td>
<td>390</td>
<td>630</td>
<td>540</td>
<td>440</td>
<td>440.00</td>
<td>(393.05,486.95)</td>
<td>(359.98,520.02)</td>
</tr>
<tr>
<td>3</td>
<td>800</td>
<td>450</td>
<td>580</td>
<td>520</td>
<td>650</td>
<td>390</td>
<td>565.00</td>
<td>(518.05,611.95)</td>
<td>(484.98,645.02)</td>
</tr>
<tr>
<td>4</td>
<td>510</td>
<td>370</td>
<td>530</td>
<td>290</td>
<td>460</td>
<td>540</td>
<td>450.00</td>
<td>(403.05,496.95)</td>
<td>(369.98,530.02)</td>
</tr>
<tr>
<td>5</td>
<td>580</td>
<td>500</td>
<td>540</td>
<td>340</td>
<td>340</td>
<td>340</td>
<td>473.33</td>
<td>(426.38,520.28)</td>
<td>(393.32,553.35)</td>
</tr>
<tr>
<td>6</td>
<td>500</td>
<td>490</td>
<td>480</td>
<td>550</td>
<td>390</td>
<td>450</td>
<td>476.67</td>
<td>(429.72,523.62)</td>
<td>(396.65,556.68)</td>
</tr>
<tr>
<td>7</td>
<td>530</td>
<td>680</td>
<td>540</td>
<td>510</td>
<td>520</td>
<td>590</td>
<td>561.67</td>
<td>(514.72,608.62)</td>
<td>(481.65,641.68)</td>
</tr>
<tr>
<td>8</td>
<td>480</td>
<td>600</td>
<td>520</td>
<td>600</td>
<td>520</td>
<td>390</td>
<td>518.33</td>
<td>(471.38,565.28)</td>
<td>(438.32,598.35)</td>
</tr>
<tr>
<td>9</td>
<td>340</td>
<td>520</td>
<td>500</td>
<td>650</td>
<td>400</td>
<td>530</td>
<td>490.00</td>
<td>(443.05,536.95)</td>
<td>(409.98,570.02)</td>
</tr>
<tr>
<td>10</td>
<td>460</td>
<td>450</td>
<td>500</td>
<td>360</td>
<td>600</td>
<td>440</td>
<td>468.33</td>
<td>(421.38,515.28)</td>
<td>(388.32,548.35)</td>
</tr>
<tr>
<td>11</td>
<td>540</td>
<td>520</td>
<td>360</td>
<td>500</td>
<td>520</td>
<td>640</td>
<td>513.33</td>
<td>(466.38,560.28)</td>
<td>(433.32,593.35)</td>
</tr>
<tr>
<td>12</td>
<td>440</td>
<td>420</td>
<td>610</td>
<td>530</td>
<td>490</td>
<td>570</td>
<td>510.00</td>
<td>(463.05,556.95)</td>
<td>(429.98,590.02)</td>
</tr>
<tr>
<td>13</td>
<td>520</td>
<td>570</td>
<td>430</td>
<td>320</td>
<td>650</td>
<td>540</td>
<td>505.00</td>
<td>(458.05,551.95)</td>
<td>(424.98,585.02)</td>
</tr>
<tr>
<td>14</td>
<td>560</td>
<td>380</td>
<td>440</td>
<td>610</td>
<td>680</td>
<td>460</td>
<td>521.67</td>
<td>(474.72,568.62)</td>
<td>(441.65,601.68)</td>
</tr>
<tr>
<td>15</td>
<td>460</td>
<td>590</td>
<td>350</td>
<td>470</td>
<td>420</td>
<td>740</td>
<td>505.00</td>
<td>(458.05,551.95)</td>
<td>(424.98,585.02)</td>
</tr>
<tr>
<td>16</td>
<td>430</td>
<td>490</td>
<td>370</td>
<td>350</td>
<td>360</td>
<td>470</td>
<td>411.67</td>
<td>(364.72,458.62)</td>
<td>(331.65,491.68)</td>
</tr>
<tr>
<td>17</td>
<td>570</td>
<td>610</td>
<td>460</td>
<td>410</td>
<td>550</td>
<td>510</td>
<td>518.33</td>
<td>(471.38,565.28)</td>
<td>(438.32,598.35)</td>
</tr>
<tr>
<td>18</td>
<td>380</td>
<td>540</td>
<td>570</td>
<td>400</td>
<td>360</td>
<td>500</td>
<td>458.33</td>
<td>(411.38,505.28)</td>
<td>(378.32,538.35)</td>
</tr>
<tr>
<td>19</td>
<td>410</td>
<td>730</td>
<td>480</td>
<td>600</td>
<td>270</td>
<td>320</td>
<td>468.33</td>
<td>(421.38,515.28)</td>
<td>(388.32,548.35)</td>
</tr>
<tr>
<td>20</td>
<td>490</td>
<td>390</td>
<td>450</td>
<td>610</td>
<td>320</td>
<td>440</td>
<td>450.00</td>
<td>(403.05,496.95)</td>
<td>(369.98,530.02)</td>
</tr>
</tbody>
</table>
Confidence intervals

$\sigma = 100$ known, $\mu = 500$ unknown, $n = 6$ points per trial, 20 trials

- In the 75% confidence interval column, 14 out of 20 (70%) intervals contain the mean ($\mu = 500$).
 This is close to 75%.

- In the 95% confidence interval column, 19 out of 20 (95%) intervals contain the mean ($\mu = 500$).
 This is exactly 95% (though if you do it 20 more times, it wouldn’t necessarily be exactly 19 the next time).

- A $k\%$ confidence interval means if we repeat the experiment a lot of times, *approximately* $k\%$ of the intervals will contain μ.
 It is *not* a guarantee that exactly $k\%$ will contain it.

- *Note*: If you really don’t know the true value of μ, you can’t actually mark the intervals that do or don’t contain it.
Confidence intervals: choosing n

- For a smaller width 95% confidence interval, increase n.
- For example, to make the 95% confidence interval be $(m - 10, m + 10)$ or smaller, we need

$$1.96\sigma / \sqrt{n} \leq 10$$

so

$$\sqrt{n} \geq 1.96\sigma / 10 = 1.96(100)/10 = 19.6$$

$$n \geq 19.6^2 = 384.16$$

$$n \geq 385$$
One-sided confidence intervals

- In a two-sided 95% confidence interval, we excluded the highest and lowest 2.5% of values and keep the middle 95%. One-sided removes the whole 5% from one side.

- **One-sided to the right:** remove the highest (right) 5% values of Z

\[
P(Z \leq z_{0.05}) = P(Z \leq 1.64) = .95
\]

95% of experiments have
\[
\frac{m - \mu}{\sigma/\sqrt{n}} \leq 1.64 \quad \text{so} \quad \mu \geq m - 1.64 \frac{\sigma}{\sqrt{n}}
\]

So the one-sided (right) 95% CI for μ is $(m - 1.64 \frac{\sigma}{\sqrt{n}}, \infty)$

- **One-sided to the left:** remove lowest (left) 5% of values of Z

\[
P(-z_{0.05} \leq Z) = P(-1.64 \leq Z) = .95
\]

The one-sided (left) 95% CI for μ is $(-\infty, m + 1.64 \frac{\sigma}{\sqrt{n}})$
5.3 Confidence intervals for p in the binomial distribution

- An election has two options, A and B.
- There are no other options and no write-ins.
- In the election: p is the fraction of votes cast for A, $1 - p$ is the fraction of votes cast for B.

In a poll beforehand: \hat{p} is the fraction polled who say they’ll vote for A.

- A single point estimate of p is denoted \hat{p}.
 We also want a 95% confidence interval for it.
- We model this by sampling from an urn
 - without replacement (hypergeometric distribution)
 - or with replacement (binomial distribution).

However, as previously discussed, this an imperfect model for a poll (sample may not be representative; sample may have non-voters; people may change their minds after the poll; etc.)
Estimating p for a poll with binomial distribution

A poll should use the hypergeometric distribution (sampling without replacement), but we approximate it by the binomial distribution (sampling with replacement).

Let p be the fraction of votes for A out of all votes. The probability k out of n in the sample say they’ll vote for A is

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}.$$

The fraction of people polled who say they’ll vote for A is $\hat{P} = \bar{X} = X/n$, with $E(\bar{X}) = p$ and $\text{Var}(\bar{X}) = p(1 - p)/n$.

The $\hat{}$ (caret) notation indicates it’s a point estimate. We already use P for too many things, so we’ll use the \bar{X} notation.
Estimating p

Point estimate of p

Poll 1000 people out of a much larger population.
Get 700 voting for A, 300 for B.
A point estimate of p (the fraction voting for A) is
$$\hat{p} = \frac{700}{1000} = .7$$

Interval estimate of p

- We could get a 95% confidence interval for p by using the formula
 $$(\bar{x} - 1.96 \frac{\sigma}{\sqrt{n}}, \bar{x} + 1.96 \frac{\sigma}{\sqrt{n}}) = \left(\hat{p} - 1.96 \frac{\sqrt{p(1-p)}}{\sqrt{n}}, \hat{p} + 1.96 \frac{\sqrt{p(1-p)}}{\sqrt{n}}\right)$$
 where we plugged in $\bar{x} = \hat{p}$ and $\sigma = SD(X_i) = \sqrt{p(1-p)}$.

- But that involves p, which is unknown! We’ll use two methods to deal with that. First, estimate p by \hat{p} in the SD to get
 $$(\hat{p} - 1.96 \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}, \hat{p} + 1.96 \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}})$$
 as an approximate 95% confidence interval for p.

- For $\hat{p} = .7$, we get $\sqrt{\hat{p}(1-\hat{p})}/n = \sqrt{.7(.3)}/1000 \approx .01449$. This gives 95% CI $(.7 - 1.96(.01449), .7 + 1.96(.01449)) = (.672, .728)$
Polls often report a margin of error instead of a confidence interval.

The half-width of the 95% confidence interval is \(1.96 \sqrt{p(1 - p)/n}\), and before we estimated \(p\) by the point estimate \(\hat{p}\).

The margin of error is the maximum that this half-width could be over all possible values of \(p\) \((0 \leq p \leq 1)\); this is at \(p = 1/2\), giving margin of error \(1.96 \sqrt{(1/2)(1/2)/n} = 1.96/(2 \sqrt{n})\).

Maximize \(p(1 - p)\) on \(0 \leq p \leq 1\):
\[
0 = \frac{d}{dp} (p - p^2) = 1 - 2p \text{ at } p = \frac{1}{2}
\]
\[
\frac{d^2}{dp^2} (p - p^2) = -2 < 0 \Rightarrow \text{ maximum}
\]
Interval estimate of p using margin of error

- The **margin of error** is the maximum possible half-width,
 \[1.96 \sqrt{\frac{1/2}{2/n}} = \frac{1.96}{2 \sqrt{n}}. \]

- With 1000 people, the margin of error is \(\frac{1.96}{2 \sqrt{1000}} \approx 0.03099 \), or about 3%. With 700 A’s, report \(\hat{p} = .70 \pm .03 \).

- A 3% margin of error means that if a large number of polls are conducted, each on 1000 people, then at least 95% of the polls will give values of \(\hat{p} \) such that the true \(p \) is between \(\hat{p} \pm 0.03 \).

- The reason it is “at least 95%” is that \(1.96 \sqrt{\frac{p(1-p)}{n}} \leq 0.03 \) and only \(= 0.03 \) when \(p = 1/2 \) exactly.

 If the true \(p \) is not equal to 1/2, then \(\frac{0.03}{\sqrt{p(1-p)/n}} > 1.96 \) so it would be a higher percent confidence interval than 95%.
Choosing n to get desired margin of error

- **Question:** How many people should be polled for a 2% margin of error?
- **Answer:** Solve $1.96/(2 \sqrt{n}) = .02$:

\[
n = \left(\frac{1.96}{2(0.02)}\right)^2 = 49^2 = 2401
\]

This means that if many polls are conducted, each with 2401 people, at least 95% of the polls will give values of \hat{p} such that the true value of p is between $\hat{p} \pm 0.02$.
Consider data 1, 2, 12.

The sample mean is \(\bar{x} = \frac{1 + 2 + 12}{3} = 5 \).

The deviations of the data from the mean are \(x_i - \bar{x} \):
\[
1 - 5, \quad 2 - 5, \quad 12 - 5 = -4, -3, 7
\]

The deviations must sum to 0 since \(\sum_{i=1}^{n} x_i - n \bar{x} = 0 \).
Knowing any \(n - 1 \) of the deviations determines the missing one.

We say there are \(n - 1 \) degrees of freedom, or \(df = n - 1 \).

Here, there are 2 degrees of freedom, and the sum of squared deviations is
\[
ss = (-4)^2 + (-3)^2 + 7^2 = 16 + 9 + 49 = 74
\]

The **sample variance** is \(s^2 = ss/df = 74/2 = 37 \).
It is a point estimate of \(\sigma^2 \).

The **sample standard deviation** is \(s = \sqrt{s^2} = \sqrt{37} \approx 6.08 \), which is a point estimate of \(\sigma \).
Sample variance: estimating σ^2 from data

Definitions

Sum of squared deviations:

$$ss = \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Sample variance:

$$s^2 = \frac{ss}{n-1} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Sample standard deviation:

$$s = \sqrt{s^2}$$

- It turns out that $E(S^2) = \sigma^2$, so s^2 is an **unbiased estimator** of σ^2.
- For the sake of demonstration, let $u^2 = \frac{ss}{n} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$.
 - It turns out that $E(U^2) = \frac{n-1}{n} \sigma^2$, so u^2 is a **biased estimator** of σ^2.
- This is because $\sum_{i=1}^{n} (x_i - \bar{x})^2$ underestimates $\sum_{i=1}^{n} (x_i - \mu)^2$.
Estimating μ and σ^2 from sample data (secret: $\mu = 500$, $\sigma = 100$)

<table>
<thead>
<tr>
<th>Exp. #</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>\bar{x}</th>
<th>s^2</th>
<th>u^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>550</td>
<td>600</td>
<td>450</td>
<td>400</td>
<td>610</td>
<td>500</td>
<td>518.33</td>
<td>7016.67</td>
<td>5847.22</td>
</tr>
<tr>
<td>2</td>
<td>500</td>
<td>520</td>
<td>370</td>
<td>520</td>
<td>480</td>
<td>440</td>
<td>471.67</td>
<td>3376.67</td>
<td>2813.89</td>
</tr>
<tr>
<td>3</td>
<td>470</td>
<td>530</td>
<td>610</td>
<td>370</td>
<td>350</td>
<td>710</td>
<td>506.67</td>
<td>19426.67</td>
<td>16188.89</td>
</tr>
<tr>
<td>4</td>
<td>630</td>
<td>620</td>
<td>430</td>
<td>470</td>
<td>500</td>
<td>470</td>
<td>520.00</td>
<td>7120.00</td>
<td>5933.33</td>
</tr>
<tr>
<td>5</td>
<td>690</td>
<td>470</td>
<td>500</td>
<td>410</td>
<td>510</td>
<td>360</td>
<td>490.00</td>
<td>12840.00</td>
<td>10700.00</td>
</tr>
<tr>
<td>6</td>
<td>450</td>
<td>490</td>
<td>500</td>
<td>380</td>
<td>530</td>
<td>680</td>
<td>505.00</td>
<td>10030.00</td>
<td>8358.33</td>
</tr>
<tr>
<td>7</td>
<td>510</td>
<td>370</td>
<td>480</td>
<td>400</td>
<td>550</td>
<td>530</td>
<td>473.33</td>
<td>5306.67</td>
<td>4422.22</td>
</tr>
<tr>
<td>8</td>
<td>420</td>
<td>330</td>
<td>540</td>
<td>460</td>
<td>630</td>
<td>390</td>
<td>461.67</td>
<td>11736.67</td>
<td>9780.56</td>
</tr>
<tr>
<td>9</td>
<td>570</td>
<td>430</td>
<td>470</td>
<td>520</td>
<td>450</td>
<td>560</td>
<td>500.00</td>
<td>3440.00</td>
<td>2866.67</td>
</tr>
<tr>
<td>10</td>
<td>260</td>
<td>530</td>
<td>330</td>
<td>490</td>
<td>530</td>
<td>630</td>
<td>461.67</td>
<td>19296.67</td>
<td>16080.56</td>
</tr>
</tbody>
</table>

Average 490.83 9959.00 8299.17

- We used $n = 6$, repeated for 10 trials, to fit the slide. Larger values of n would be better in practice.
- Average of sample means: $490.83 \approx \mu = 500$.
- Average of sample variances: $9959.00 \approx \sigma^2 = 10000$.
- u^2, using the wrong denominator $n = 6$ instead of $n - 1 = 5$, gave an average $8299.17 \approx \frac{n-1}{n}\sigma^2 = 8333.33$.
Proof that denominator $n - 1$ makes s^2 unbiased

- Expand the $i = 1$ term of $SS = \sum_{i=1}^{n} (X_i - \bar{X})^2$:
 \[
 E((X_1 - \bar{X})^2) = E(X_1^2) + E(\bar{X}^2) - 2E(X_1\bar{X})
 \]

- $\text{Var}(X) = E(X^2) - E(X)^2 \Rightarrow E(X^2) = \text{Var}(X) + E(X)^2$. So
 \[
 E(X_1^2) = \sigma^2 + \mu^2 \quad E(\bar{X}^2) = \text{Var}(\bar{X}) + E(\bar{X}^2) = \frac{\sigma^2}{n} + \mu^2
 \]

- Cross-term:
 \[
 E(X_1\bar{X}) = \frac{E(X_1^2) + E(X_1)E(X_2) + \cdots + E(X_1)E(X_n)}{n}
 \]
 \[
 = \frac{(\sigma^2 + \mu^2) + (n - 1)\mu^2}{n} = \frac{\sigma^2}{n} + \mu^2
 \]

- Total for $i = 1$ term:
 \[
 E((X_1 - \bar{X})^2) = (\sigma^2 + \mu^2) + \left(\frac{\sigma^2}{n} + \mu^2\right) - 2 \left(\frac{\sigma^2}{n} + \mu^2\right) = \frac{n - 1}{n} \sigma^2
 \]
Proof that denominator \(n - 1 \) makes \(s^2 \) unbiased

Similarly, term \(i \) of \(SS = \sum_{i=1}^{n} (X_i - \bar{X})^2 \) expands to

\[
E((X_i - \bar{X})^2) = \frac{n - 1}{n} \sigma^2
\]

The total is

\[
E(SS) = (n - 1) \sigma^2
\]

Thus we must divide \(SS \) by \(n - 1 \) instead of \(n \) to get an estimate of \(\sigma^2 \) (called an \textit{unbiased estimator} of \(\sigma^2 \)).

\[
E \left(\frac{SS}{n - 1} \right) = \sigma^2
\]

If we divided by \(n \) instead, it would come out to

\[
E \left(\frac{SS}{n} \right) = \frac{n - 1}{n} \sigma^2
\]

which is called a \textit{biased estimator}.
Let x_1, \ldots, x_n be n data points. We already saw these formulas:

Sample mean:

$$m = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Sample variance:

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - m)^2$$

Sample standard deviation:

$$s = \sqrt{s^2}$$

By plugging the formula for m into the formula for s^2 and manipulating it, it can be shown that

$$s^2 = \frac{n \left(\sum_{i=1}^{n} x_i^2 \right) - \left(\sum_{i=1}^{n} x_i \right)^2}{n(n-1)}$$

This is a useful shortcut in calculators and statistical software.
Efficient formula for sample variance

- Some calculators have a feature to let you type in a list of numbers and compute their sample mean and sample standard deviation.
- For the numbers 10, 20, 30, 40:

<table>
<thead>
<tr>
<th>n</th>
<th>x_n</th>
<th>$\sum_{i=1}^{n} x_i$</th>
<th>$\sum_{i=1}^{n} x_i^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>30</td>
<td>500</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>60</td>
<td>1400</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>100</td>
<td>3000</td>
</tr>
</tbody>
</table>

The calculator only keeps track of n and running totals $\sum x_i$, $\sum x_i^2$.
- The sample mean is $m = (\sum_{i=1}^{n} x_i)/n = 100/4 = 25$.
- The sample variance and sample standard deviation are

$$s^2 = \frac{n(\sum_{i=1}^{n} x_i^2) - (\sum_{i=1}^{n} x_i)^2}{n(n-1)} = \frac{4(3000)-(100)^2}{4(3)} \approx 166.67$$

$$s = \sqrt{\frac{500}{3}} \approx 12.91$$

- With the formula $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - m)^2$, the calculator has to store all the numbers, then compute m, then compute s.
The CAPE questionnaire asks how many hours a week you spend on a class. Suppose the number of answers in each category is

<table>
<thead>
<tr>
<th># hours/week</th>
<th>Frequency (f_i)</th>
<th>Midpoint of interval (m_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–1</td>
<td>2</td>
<td>.5</td>
</tr>
<tr>
<td>2–3</td>
<td>20</td>
<td>2.5</td>
</tr>
<tr>
<td>4–5</td>
<td>31</td>
<td>4.5</td>
</tr>
<tr>
<td>6–7</td>
<td>11</td>
<td>6.5</td>
</tr>
<tr>
<td>8–9</td>
<td>3</td>
<td>8.5</td>
</tr>
<tr>
<td>10–11</td>
<td>1</td>
<td>10.5</td>
</tr>
<tr>
<td>12–13</td>
<td>5</td>
<td>12.5</td>
</tr>
</tbody>
</table>

Total: $n = 73$

This question on the survey has $k = 7$ groups into which the $n = 73$ students are placed.

Assume all students in the 0–1 hrs/wk category are .5 hrs/wk; all students in the 2–3 hrs/wk category are 2.5 hrs/wk; etc.

Treat it as a list of two .5’s, twenty 2.5’s, thirty one 4.5’s, etc.
Grouped data (also called binned data)

<table>
<thead>
<tr>
<th># hours/week</th>
<th>Frequency ((f_i))</th>
<th>Midpoint of interval ((m_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–1</td>
<td>2</td>
<td>.5</td>
</tr>
<tr>
<td>2–3</td>
<td>20</td>
<td>2.5</td>
</tr>
<tr>
<td>4–5</td>
<td>31</td>
<td>4.5</td>
</tr>
<tr>
<td>6–7</td>
<td>11</td>
<td>6.5</td>
</tr>
<tr>
<td>8–9</td>
<td>3</td>
<td>8.5</td>
</tr>
<tr>
<td>10–11</td>
<td>1</td>
<td>10.5</td>
</tr>
<tr>
<td>12–13</td>
<td>5</td>
<td>12.5</td>
</tr>
</tbody>
</table>

Total: \(n = 73\)

- **Sample mean:**
 \[
 \frac{1}{73} \left(2(.5) + 20(2.5) + 31(4.5) + 11(6.5) + 3(8.5) + 1(10.5) + 5(12.5) \right)
 = 4.9384 \text{ hours/week}

- **Sample variance and SD:**
 \[
 s^2 = \frac{1}{72} \left(2(.5 - 4.94)^2 + 20(2.5 - 4.94)^2 + \cdots + 5(12.5 - 4.94)^2 \right)
 = 7.5830 \text{ hours}^2/\text{week}^2

 \[s = \sqrt{7.5830} = 2.7537 \text{ hours/week} \]
The bins on the CAPE survey should be widened to cover all possibilities (for example, where does 7.25 go?)
Fix it by expanding the bins: e.g., 2–3 becomes 1.5–3.5.

Treating all students in the 2–3 hours/week category (which should be 1.5–3.5) as 2.5 hours/week is only an approximation; for each student in this category, this is off by up to ±1.

- In computing the grouped sample mean, it is assumed that such errors balance out.
- In computing the grouped sample variance, these errors are not taken into consideration. A different formula could be used to take that into account.