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Estimating parameters of the normal distribution (µ,σ)
or the binomial distribution (p) from data

We will assume throughout that the SAT math test was designed to
have a normal distribution.

Secretly, µ = 500 and σ = 100, but we don’t know those are the values
so we want to estimate them from data.

Chapter 5.3: Pretend we know σ but not µ and we want to
estimate µ from experimental data.
Chapter 5.4: Estimate both µ and σ from experimental data.
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5.3 Estimating parameters from data

Basic experiment
1 Sample n random students from the whole population of SAT

takers. The scores of these students are x1, . . . , xn.
2 Compute the sample mean of these scores:

m = x̄ =
x1 + · · ·+ xn

n
The sample mean is a point estimate of µ; it just gives one
number, without an indication of how far away it might be from µ.

3 Repeat the above with many independent samples, getting
different sample means each time.

The long-term average of the sample means will be approximately

E(X) = E
(X1+···+Xn

n

)
= µ+···+µ

n =
nµ
n

= µ

These estimates will be distributed with variance Var(X) = σ2/n.
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Sample data
Trial # x1 x2 x3 x4 x5 x6 m = x̄

1 720 490 660 520 390 390 528.33
2 380 260 390 630 540 440 440.00
3 800 450 580 520 650 390 565.00
4 510 370 530 290 460 540 450.00
5 580 500 540 540 340 340 473.33
6 500 490 480 550 390 450 476.67
7 530 680 540 510 520 590 561.67
8 480 600 520 600 520 390 518.33
9 340 520 500 650 400 530 490.00
10 460 450 500 360 600 440 468.33
11 540 520 360 500 520 640 513.33
12 440 420 610 530 490 570 510.00
13 520 570 430 320 650 540 505.00
14 560 380 440 610 680 460 521.67
15 460 590 350 470 420 740 505.00
16 430 490 370 350 360 470 411.67
17 570 610 460 410 550 510 518.33
18 380 540 570 400 360 500 458.33
19 410 730 480 600 270 320 468.33
20 490 390 450 610 320 440 450.00

Average 491.67
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Sample mean notation
Variable names

Actual distribution Point estimate from a sample
(Greek letters) (Latin letters)

X: random variable x1, . . . , xn: sample data
µ: mean m or x̄: sample mean

(or Y; y1, . . . , yn; ȳ)
σ2: variance s2: sample variance
σ: standard deviation s: sample standard deviation

Lowercase/Uppercase
Lowercase: Given specific numbers x1, . . . , xn, the sample mean
evaluates to a number as well.
Uppercase: We will study performing this computation repeatedly
with different data, treating the data X1, . . . , Xn as random
variables. This makes the sample mean a random variable.

m = x̄ =
x1 + · · ·+ xn

n
M = X =

X1 + · · ·+ Xn

n
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Sample data
Trial # x1 x2 x3 x4 x5 x6 m = x̄

1 720 490 660 520 390 390 528.33
2 380 260 390 630 540 440 440.00
3 800 450 580 520 650 390 565.00
4 510 370 530 290 460 540 450.00
5 580 500 540 540 340 340 473.33
6 500 490 480 550 390 450 476.67
7 530 680 540 510 520 590 561.67
8 480 600 520 600 520 390 518.33
9 340 520 500 650 400 530 490.00

10 460 450 500 360 600 440 468.33
11 540 520 360 500 520 640 513.33
12 440 420 610 530 490 570 510.00
13 520 570 430 320 650 540 505.00
14 560 380 440 610 680 460 521.67
15 460 590 350 470 420 740 505.00
16 430 490 370 350 360 470 411.67
17 570 610 460 410 550 510 518.33
18 380 540 570 400 360 500 458.33
19 410 730 480 600 270 320 468.33
20 490 390 450 610 320 440 450.00

Average 491.67

µ = 500, σ = 100

Are the sample means
close or far to the true
mean µ = 500?

What does “close” mean?
Within ±0.01?

±1?
±10?

The scale for measuring
“closeness” is based on
standard deviations.
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Z-scores

How often is the sample mean “close” to the secret value of µ?

The sample mean is a random variable X with mean E(X) = µ and
standard deviation SD(X) = σ/

√
n. So

z =
m − µ

σ/
√

n
if we knew secret: =

m − 500
100/

√
n

Exclude the top 2.5% and bottom 2.5% of values of Z and regard
the middle 95% as “close.” So

P(−z.025 < Z < z.025) = P(−1.96 < Z < 1.96) = .95

For m = 411.67 (one of the trials in our demo):

z =
411.67 − 500

100/
√

6
=

−88.33
40.82

= −2.16

which is outside of ±1.96, so m = 411.67 is “far” from µ = 500.
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Confidence intervals

We will rearrange this equation to isolate µ:

P(−1.96 < Z < 1.96) = P(−1.96 <
M − µ

σ/
√

n
< 1.96) = .95

Interpretation: in ≈ 95% of the trials of this experiment, the value
M = m satisfies

−1.96 < m−µ
σ/
√

n < 1.96

Solve for bounds on µ from the upper limit on Z:
m−µ
σ/
√

n < 1.96 ⇔ m − µ < 1.96 σ√
n ⇔ m − 1.96 σ√

n < µ

Notice the 1.96 turned into −1.96 and we get a lower limit on µ.

Also solve for an upper bound on µ from the lower limit on Z:
−1.96 < m−µ

σ/
√

n ⇔ −1.96 σ√
n < m − µ ⇔ µ < m + 1.96 σ√

n

Together, m − 1.96 σ√
n < µ < m + 1.96 σ√

n
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Confidence intervals

In ≈ 95% of the trials of this experiment, the value M = m satisfies

m − 1.96
σ√

n
< µ < m + 1.96

σ√
n

So, ≈ 95% of the time we perform this experiment, the true mean
µ is in the interval (

m − 1.96
σ√

n
, m + 1.96

σ√
n

)
which is called a (two-sided) 95% confidence interval .

For a 100(1 − α)% C.I., use ±zα/2 instead of ±1.96.

Other commonly used percentages:
For a 99% confidence interval, use ±2.58 instead of ±1.96.
For a 90% confidence interval, use ±1.64 instead of ±1.96.

For demo purposes:
For a 75% confidence interval, use ±1.15 instead of ±1.96.
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Confidence intervals

Example: Six scores 380, 260, 390, 630, 540, 440
Sample mean: m = 380+260+390+630+540+440

6 = 440

σ: We assumed σ = 100 at the beginning

95% CI half-width: 1.96 σ√
n =

(1.96)(100)√
6

≈ 80.02

95% CI: (440 − 80.02, 440 + 80.02) = (359.98, 520.02)

Has the true mean, µ = 500.

75% CI half-width: 1.15 σ√
n =

(1.15)(100)√
6

≈ 46.95

75% CI: (440 − 46.95, 440 + 46.95) = (393.05, 486.95)

Doesn’t have the true mean, µ = 500.
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Confidence intervals
σ = 100 known, µ = 500 unknown, n = 6 points per trial, 20 trials

Confidence intervals not containing point µ = 500 are marked *(393.05,486.95)*.
Trial # x1 x2 x3 x4 x5 x6 m = x̄ 75% conf. int. 95% conf. int.

1 720 490 660 520 390 390 528.33 (481.38,575.28) (448.32,608.35)
2 380 260 390 630 540 440 440.00 *(393.05,486.95)* (359.98,520.02)
3 800 450 580 520 650 390 565.00 *(518.05,611.95)* (484.98,645.02)
4 510 370 530 290 460 540 450.00 *(403.05,496.95)* (369.98,530.02)
5 580 500 540 540 340 340 473.33 (426.38,520.28) (393.32,553.35)
6 500 490 480 550 390 450 476.67 (429.72,523.62) (396.65,556.68)
7 530 680 540 510 520 590 561.67 *(514.72,608.62)* (481.65,641.68)
8 480 600 520 600 520 390 518.33 (471.38,565.28) (438.32,598.35)
9 340 520 500 650 400 530 490.00 (443.05,536.95) (409.98,570.02)
10 460 450 500 360 600 440 468.33 (421.38,515.28) (388.32,548.35)
11 540 520 360 500 520 640 513.33 (466.38,560.28) (433.32,593.35)
12 440 420 610 530 490 570 510.00 (463.05,556.95) (429.98,590.02)
13 520 570 430 320 650 540 505.00 (458.05,551.95) (424.98,585.02)
14 560 380 440 610 680 460 521.67 (474.72,568.62) (441.65,601.68)
15 460 590 350 470 420 740 505.00 (458.05,551.95) (424.98,585.02)
16 430 490 370 350 360 470 411.67 *(364.72,458.62)* *(331.65,491.68)*
17 570 610 460 410 550 510 518.33 (471.38,565.28) (438.32,598.35)
18 380 540 570 400 360 500 458.33 (411.38,505.28) (378.32,538.35)
19 410 730 480 600 270 320 468.33 (421.38,515.28) (388.32,548.35)
20 490 390 450 610 320 440 450.00 *(403.05,496.95)* (369.98,530.02)
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Confidence intervals
σ = 100 known, µ = 500 unknown, n = 6 points per trial, 20 trials

In the 75% confidence interval column, 14 out of 20 (70%)
intervals contain the mean (µ = 500).
This is close to 75%.

In the 95% confidence interval column, 19 out of 20 (95%)
intervals contain the mean (µ = 500).
This is exactly 95% (though if you do it 20 more times, it wouldn’t
necessarily be exactly 19 the next time).

A k% confidence interval means if we repeat the experiment a lot
of times, approximately k% of the intervals will contain µ.
It is not a guarantee that exactly k% will contain it.

Note: If you really don’t know the true value of µ, you can’t
actually mark the intervals that do or don’t contain it.
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Confidence intervals: choosing n

For a smaller width 95% confidence interval, increase n.
For example, to make the 95% confidence interval be
(m − 10, m + 10) or smaller, we need

1.96σ/
√

n 6 10

so √
n > 1.96σ/10 = 1.96(100)/10 = 19.6

n > 19.62 = 384.16

n > 385
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One-sided confidence intervals

In a two-sided 95% confidence interval, we exclude the highest and
lowest 2.5% of values and keep the middle 95%.
One-sided removes the whole 5% from one side.
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Two-sided One-sided (right) One-sided (left)
Remove:

2.5% on each side 5% on right 5% on left
Keep:

−z.025 < Z < z.025 Z < z.05 Z > −z.05
−1.96 < Z < 1.96 Z < 1.64 Z > −1.64
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One-sided confidence intervals

One-sided to the right: remove the highest (right) 5% values of Z

P(Z < z.05) = P(Z < 1.64) = .95

≈95% of experiments have
m − µ

σ/
√

n
< 1.64, so µ > m − 1.64

σ√
n

So the one-sided (right) 95% CI for µ is (m − 1.64 σ√
n ,∞)

One-sided to the left: remove lowest (left) 5% of values of Z

P(−z.05 < Z) = P(−1.64 < Z) = .95

The one-sided (left) 95% CI for µ is (−∞, m + 1.64 σ√
n)
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5.3 Confidence intervals for p in the binomial distribution

An election has two options, A and B.

There are no other options and no write-ins.

In the election: p is the fraction of votes cast for A,
1 − p is the fraction of votes cast for B.

In a poll beforehand: p̂ is the fraction polled who say
they’ll vote for A.

A single point estimate of p is denoted p̂.
We also want a 95% confidence interval for it.

We model this by sampling from an urn
without replacement (hypergeometric distribution)
or with replacement (binomial distribution).

However, this an imperfect model for a poll (sample may not be
representative; sample may have non-voters; people may change
their minds after the poll; etc.)
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Estimating p for a poll with binomial distribution

A poll should use the hypergeometric distribution (sampling
without replacement), but we approximate it by the binomial
distribution (sampling with replacement).

Let p be the fraction of votes for A out of all votes.
The probability k out of n in the sample say they’ll vote for A is

P(X = k) =
(n

k

)
pk(1 − p)n−k.

The fraction of people polled who say they’ll vote for A is
P̂ = X = X/n, with E(X) = p and Var(X) = p(1 − p)/n.

The ̂ (caret) notation indicates it’s a point estimate.
We already use P for too many things, so we’ll use the X notation.
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Estimating p
Point estimate of p
Poll 1000 people out of a much larger population.
Get 700 voting for A, 300 for B.
A point estimate of p (the fraction voting for A) is p̂ = 700

1000 = .7

Interval estimate of p
We could get a 95% confidence interval for p by using the formula(

x̄ − 1.96 σ√
n , x̄ + 1.96 σ√

n

)
=

(
p̂ − 1.96

√
p(1−p)√

n , p̂ + 1.96
√

p(1−p)√
n

)
where we plugged in x̄ = p̂ and σ = SD(Xi) =

√
p(1 − p).

But that involves p, which is unknown! We’ll use two methods to
deal with that. First, estimate p by p̂ in the SD to get(

p̂ − 1.96
√

p̂(1−p̂)√
n , p̂ + 1.96

√
p̂(1−p̂)√

n

)
as an approximate 95% confidence interval for p.
For p̂ = .7, we get

√
p̂(1 − p̂)/n =

√
.7(.3)/1000 ≈ .01449. This

gives 95% CI (.7 − 1.96(.01449), .7 + 1.96(.01449)) = (.672, .728)
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Interval estimate of p using margin of error

Polls often report a margin of error instead of a confidence
interval.

The half-width of the 95% confidence interval is 1.96
√

p(1 − p)/n,
and before we estimated p by the point estimate p̂.

The margin of error is the maximum that this half-width could be
over all possible values of p (0 6 p 6 1); this is at p = 1/2, giving
margin of error 1.96

√
(1/2)(1/2)/n = 1.96/(2

√
n).

Maximize p(1 − p) on 0 6 p 6 1:

0 = d
dp(p − p2) = 1 − 2p at p = 1

2

d2

dp2 (p − p2) = −2 < 0⇒ maximum

p

y

0.0 0.5 1.0
0.
00

0.
25

p

p(1 ! p)
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Interval estimate of p using margin of error

The margin of error is the maximum possible half-width,
1.96

√
(1/2)(1/2)/n = 1.96/(2

√
n).

With 1000 people, the margin of error is 1.96/(2
√

1000) ≈ .03099,
or about 3%. With 700 A’s, report p̂ = .70± .03.

A 3% margin of error means that if a large number of polls are
conducted, each on 1000 people, then at least 95% of the polls
will give values of p̂ such that the true p is between p̂± 0.03.

The reason it is “at least 95%” is that 1.96
√

p(1 − p)/n 6 0.03 and
only = 0.03 when p = 1/2 exactly.

If the true p is not equal to 1/2, then 0.03√
p(1−p)/n

> 1.96

so it would be a higher percent confidence interval than 95%.
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Choosing n to get desired margin of error

Question: How many people should be polled for a 2% margin of
error?

Answer: Solve 1.96/(2
√

n) = .02:
n = (1.96/(2(0.02)))2 = 492 = 2401

This means that if many polls are conducted, each with 2401
people, at least 95% of the polls will give values of p̂ such that the
true value of p is between p̂± 0.02.
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5.4 Sample variance s2: estimating σ2 from data

Consider data 1, 2, 12.
The sample mean is x̄ = 1+2+12

3 = 5.
The deviations of the data from the mean are xi − x̄:

1 − 5, 2 − 5, 12 − 5 = −4,−3, 7

The deviations must sum to 0 since (
∑n

i=1 xi) − nx̄ = 0.
Knowing any n − 1 of the deviations determines the missing one.
We say there are n − 1 degrees of freedom, or df = n − 1.
Here, there are 2 degrees of freedom, and the sum of squared
deviations is

ss = (−4)2 + (−3)2 + 72 = 16 + 9 + 49 = 74

The sample variance is s2 = ss/df = 74/2 = 37.
It is a point estimate of σ2.
The sample standard deviation is s =

√
s2 =

√
37 ≈ 6.08, which is

a point estimate of σ.
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Sample variance: estimating σ2 from data

Definitions

Sum of squared deviations: ss =
n∑

i=1

(xi − x̄)2

Sample variance: s2 =
ss

n − 1
=

1
n − 1

n∑
i=1

(xi − x̄)2

Sample standard deviation: s =
√

s2

It turns out that E(S2) = σ2, so s2 is an unbiased estimator of σ2.

For the sake of demonstration, let u2 = ss
n = 1

n

∑n
i=1(xi − x̄)2.

It turns out that E(U2) = n−1
n σ

2, so u2 is a biased estimator of σ2.

This is because
∑n

i=1(xi − x̄)2 underestimates
∑n

i=1(xi − µ)
2.
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Estimating µ and σ2 from sample data (secret: µ = 500, σ = 100)

Exp. # x1 x2 x3 x4 x5 x6 x̄ s2 u2

1 550 600 450 400 610 500 518.33 7016.67 5847.22
2 500 520 370 520 480 440 471.67 3376.67 2813.89
3 470 530 610 370 350 710 506.67 19426.67 16188.89
4 630 620 430 470 500 470 520.00 7120.00 5933.33
5 690 470 500 410 510 360 490.00 12840.00 10700.00
6 450 490 500 380 530 680 505.00 10030.00 8358.33
7 510 370 480 400 550 530 473.33 5306.67 4422.22
8 420 330 540 460 630 390 461.67 11736.67 9780.56
9 570 430 470 520 450 560 500.00 3440.00 2866.67

10 260 530 330 490 530 630 461.67 19296.67 16080.56
Average 490.83 9959.00 8299.17

We used n = 6, repeated for 10 trials, to fit the slide.
Larger values of n would be better in practice.
Average of sample means: 490.83 ≈ µ = 500.
Average of sample variances: 9959.00 ≈ σ2 = 10000.
u2, using the wrong denominator n = 6 instead of n − 1 = 5, gave
an average 8299.17 ≈ n−1

n σ
2 = 8333.33.
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Proof that denominator n − 1 makes s2 unbiased

Expand the i = 1 term of SS =
∑n

i=1(Xi − X)2:

E((X1 − X)2) = E(X1
2) + E(X2

) − 2E(X1X)

Var(X) = E(X2) − E(X)2 ⇒ E(X2) = Var(X) + E(X)2. So

E(X1
2) = σ2 + µ2 E(X2

) = Var(X) + E(X2
) =

σ2

n
+ µ2

Cross-term:

E(X1X) =
E(X1

2) + E(X1)E(X2) + · · ·+ E(X1)E(Xn)

n

=
(σ2 + µ2) + (n − 1)µ2

n
=
σ2

n
+ µ2

Total for i = 1 term:

E((X1 − X)2) =
(
σ2+µ2)+ (σ2

n
+µ2

)
− 2

(
σ2

n
+µ2

)
=

n − 1
n
σ2
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Proof that denominator n − 1 makes s2 unbiased

Similarly, term i of SS =
∑n

i=1(Xi − X)2 expands to

E((Xi − X)2) =
n − 1

n
σ2

The total is
E(SS) = (n − 1)σ2

Thus we must divide SS by n − 1 instead of n to get an estimate of
σ2 (called an unbiased estimator of σ2).

E
(

SS
n − 1

)
= σ2

If we divided by n instead, it would come out to

E
(

SS
n

)
=

n − 1
n
σ2

which is called a biased estimator .
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More formulas for sample mean and variance

Let x1, . . . , xn be n data points. We already saw these formulas:

Sample mean: m = x̄ = 1
n

∑n
i=1 xi

Sample variance: s2 = 1
n−1

∑n
i=1(xi − m)2

Sample standard deviation: s =
√

s2

By plugging the formula for m into the formula for s2 and
manipulating it, it can be shown that

s2 =
n
(∑n

i=1 xi
2
)
− (

∑n
i=1 xi)

2

n(n − 1)

This is a useful shortcut in calculators and statistical software.
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Efficient formula for sample variance

Some calculators have a feature to let you type in a list of numbers
and compute their sample mean and sample standard deviation.
For the numbers 10, 20, 30, 40:

n xn
∑n

i=1 xi
∑n

i=1 xi
2

1 10 10 100
2 20 30 500
3 30 60 1400
4 40 100 3000

The calculator only keeps track of n and running totals
∑

xi,
∑

xi
2.

The sample mean is m = (
∑n

i=1 xi)/n = 100/4 = 25.
The sample variance and sample standard deviation are

s2 =
n(

∑n
i=1 xi

2)−(
∑n

i=1 xi)
2

n(n−1) =
4(3000)−(100)2

4(3) ≈ 166.67
s =

√
500/3 ≈ 12.91

With the formula s2 = 1
n−1

∑n
i=1(xi − m)2, the calculator has to

store all the numbers, then compute m, then compute s.
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Grouped data (also called binned data)

The CAPE questionnaire asks how many hours a week you spend
on a class. Suppose the number of answers in each category is

# hours/week Frequency (fi) Midpoint of interval (mi)
0–1 2 .5
2–3 20 2.5
4–5 31 4.5
6–7 11 6.5
8–9 3 8.5

10–11 1 10.5
12–13 5 12.5
Total: n = 73

This question on the survey has k = 7 groups into which the
n = 73 students are placed.
Assume all students in the 0–1 hrs/wk category are .5 hrs/wk; all
students in the 2–3 hrs/wk category are 2.5 hrs/wk; etc.
Treat it as a list of two .5’s, twenty 2.5’s, thirty one 4.5’s, etc.

Prof. Tesler Ch. 5: Confidence Intervals,Sample Variance Math 186 / Winter 2019 29 / 31



Grouped data (also called binned data)

# hours/week Frequency (fi) Midpoint of interval (mi)
0–1 2 .5
2–3 20 2.5
4–5 31 4.5
6–7 11 6.5
8–9 3 8.5

10–11 1 10.5
12–13 5 12.5
Total: n = 73

Sample mean:
1

73 (2(.5)+20(2.5)+31(4.5)+11(6.5)+3(8.5)+1(10.5)+5(12.5))
= 4.9384 hours/week

Sample variance and SD:
s2 = 1

72

(
2(.5 − 4.94)2 + 20(2.5 − 4.94)2 + · · ·+ 5(12.5 − 4.94)2

)
= 7.5830 hours2/week2

s =
√

7.5830 = 2.7537 hours/week
Prof. Tesler Ch. 5: Confidence Intervals,Sample Variance Math 186 / Winter 2019 30 / 31



Grouped data — errors in this method

The bins on the CAPE survey should be widened to cover all
possibilities (for example, where does 7.25 go?)
Fix it by expanding the bins: e.g., 2–3 becomes 1.5–3.5.

Treating all students in the 2–3 hours/week category (which
should be 1.5–3.5) as 2.5 hours/week is only an approximation;
for each student in this category, this is off by up to ±1.

In computing the grouped sample mean, it is assumed that such
errors balance out.
In computing the grouped sample variance, these errors are not
taken into consideration. A different formula could be used to take
that into account.
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