Estimating parameters 5.3 Confidence Intervals 5.4 Sample Variance

Prof. Tesler

Math 186 Winter 2019

Prof. Tesler

Ch. 5: Confidence Intervals, Sample Variance

Math 186 / Winter 2019 1 / 31

# Estimating parameters of the normal distribution $(\mu, \sigma)$ or the binomial distribution (p) from data

We will assume throughout that the SAT math test was designed to have a normal distribution.

Secretly,  $\mu = 500$  and  $\sigma = 100$ , but we don't know those are the values so we want to estimate them from data.

- Chapter 5.3: Pretend we know σ but not μ and we want to estimate μ from experimental data.
- Chapter 5.4: Estimate both  $\mu$  and  $\sigma$  from experimental data.

# 5.3 Estimating parameters from data

#### **Basic experiment**

- Sample *n* random students from the whole population of SAT takers. The scores of these students are  $x_1, \ldots, x_n$ .
- Compute the sample mean of these scores:

$$m = \bar{x} = \frac{x_1 + \dots + x_n}{n}$$

The sample mean is a *point estimate* of  $\mu$ ; it just gives one number, without an indication of how far away it might be from  $\mu$ .

Repeat the above with many independent samples, getting different sample means each time.

The long-term average of the sample means will be approximately

$$E(\overline{X}) = E\left(\frac{X_1 + \dots + X_n}{n}\right) = \frac{\mu + \dots + \mu}{n} = \frac{n\mu}{n} = \mu$$

These estimates will be distributed with variance  $Var(\overline{X}) = \sigma^2/n$ .

# Sample data

| Trial # | $ x_1 $ | $x_2$ | <i>x</i> <sub>3</sub> | $X_4$ | $x_5$ | $x_6$ | $m = \bar{x}$ |
|---------|---------|-------|-----------------------|-------|-------|-------|---------------|
| 1       | 720     | 490   | 660                   | 520   | 390   | 390   | 528.33        |
| 2       | 380     | 260   | 390                   | 630   | 540   | 440   | 440.00        |
| 3       | 800     | 450   | 580                   | 520   | 650   | 390   | 565.00        |
| 4       | 510     | 370   | 530                   | 290   | 460   | 540   | 450.00        |
| 5       | 580     | 500   | 540                   | 540   | 340   | 340   | 473.33        |
| 6       | 500     | 490   | 480                   | 550   | 390   | 450   | 476.67        |
| 7       | 530     | 680   | 540                   | 510   | 520   | 590   | 561.67        |
| 8       | 480     | 600   | 520                   | 600   | 520   | 390   | 518.33        |
| 9       | 340     | 520   | 500                   | 650   | 400   | 530   | 490.00        |
| 10      | 460     | 450   | 500                   | 360   | 600   | 440   | 468.33        |
| 11      | 540     | 520   | 360                   | 500   | 520   | 640   | 513.33        |
| 12      | 440     | 420   | 610                   | 530   | 490   | 570   | 510.00        |
| 13      | 520     | 570   | 430                   | 320   | 650   | 540   | 505.00        |
| 14      | 560     | 380   | 440                   | 610   | 680   | 460   | 521.67        |
| 15      | 460     | 590   | 350                   | 470   | 420   | 740   | 505.00        |
| 16      | 430     | 490   | 370                   | 350   | 360   | 470   | 411.67        |
| 17      | 570     | 610   | 460                   | 410   | 550   | 510   | 518.33        |
| 18      | 380     | 540   | 570                   | 400   | 360   | 500   | 458.33        |
| 19      | 410     | 730   | 480                   | 600   | 270   | 320   | 468.33        |
| 20      | 490     | 390   | 450                   | 610   | 320   | 440   | 450.00        |
|         | 1       |       |                       |       | Ave   | rage  | 491.67        |

Prof. Tesler

# Sample mean notation

| /ar | iable names                            |                                                                                        |
|-----|----------------------------------------|----------------------------------------------------------------------------------------|
|     | Actual distribution<br>(Greek letters) | Point estimate from a sample<br>(Latin letters)                                        |
|     | X: random variable                     | $x_1, \ldots, x_n$ : sample data                                                       |
|     | μ: mean                                | <i>m</i> or $\bar{x}$ : sample mean<br>(or <i>Y</i> ; $y_1, \ldots, y_n$ ; $\bar{y}$ ) |
|     | $\sigma^2$ : variance                  | s <sup>2</sup> : sample variance                                                       |
|     | $\sigma$ : standard deviation          | s: sample standard deviation                                                           |

#### Lowercase/Uppercase

- **Lowercase:** Given specific numbers  $x_1, \ldots, x_n$ , the sample mean evaluates to a number as well.
- **Uppercase:** We will study performing this computation repeatedly with different data, treating the data  $X_1, \ldots, X_n$  as random variables. This makes the sample mean a random variable.

$$m = \overline{x} = \frac{x_1 + \dots + x_n}{n}$$
  $M = \overline{X} = \frac{X_1 + \dots + X_n}{n}$ 

## Sample data

| Trial # | $x_1$ | $x_2$ | <i>x</i> <sub>3</sub> | $X_4$ | <i>x</i> <sub>5</sub> | $x_6$ | $m = \bar{x}$ |
|---------|-------|-------|-----------------------|-------|-----------------------|-------|---------------|
| 1       | 720   | 490   | 660                   | 520   | 390                   | 390   | 528.33        |
| 2       | 380   | 260   | 390                   | 630   | 540                   | 440   | 440.00        |
| 3       | 800   | 450   | 580                   | 520   | 650                   | 390   | 565.00        |
| 4       | 510   | 370   | 530                   | 290   | 460                   | 540   | 450.00        |
| 5       | 580   | 500   | 540                   | 540   | 340                   | 340   | 473.33        |
| 6       | 500   | 490   | 480                   | 550   | 390                   | 450   | 476.67        |
| 7       | 530   | 680   | 540                   | 510   | 520                   | 590   | 561.67        |
| 8       | 480   | 600   | 520                   | 600   | 520                   | 390   | 518.33        |
| 9       | 340   | 520   | 500                   | 650   | 400                   | 530   | 490.00        |
| 10      | 460   | 450   | 500                   | 360   | 600                   | 440   | 468.33        |
| 11      | 540   | 520   | 360                   | 500   | 520                   | 640   | 513.33        |
| 12      | 440   | 420   | 610                   | 530   | 490                   | 570   | 510.00        |
| 13      | 520   | 570   | 430                   | 320   | 650                   | 540   | 505.00        |
| 14      | 560   | 380   | 440                   | 610   | 680                   | 460   | 521.67        |
| 15      | 460   | 590   | 350                   | 470   | 420                   | 740   | 505.00        |
| 16      | 430   | 490   | 370                   | 350   | 360                   | 470   | 411.67        |
| 17      | 570   | 610   | 460                   | 410   | 550                   | 510   | 518.33        |
| 18      | 380   | 540   | 570                   | 400   | 360                   | 500   | 458.33        |
| 19      | 410   | 730   | 480                   | 600   | 270                   | 320   | 468.33        |
| 20      | 490   | 390   | 450                   | 610   | 320                   | 440   | 450.00        |
|         |       |       |                       |       | Ave                   | rage  | 491.67        |

- $\mu = 500, \sigma = 100$
- Are the sample means close or far to the true mean  $\mu = 500$ ?
- What does "close" mean? Within ±0.01? ±1? ±10?
- The scale for measuring "closeness" is based on standard deviations.

• How often is the sample mean "close" to the secret value of  $\mu$ ?

• The sample mean is a random variable  $\overline{X}$  with mean  $E(\overline{X}) = \mu$  and standard deviation  $SD(\overline{X}) = \sigma / \sqrt{n}$ . So

 $z = \frac{m - \mu}{\sigma / \sqrt{n}}$  if we knew secret:  $= \frac{m - 500}{100 / \sqrt{n}}$ 

 Exclude the top 2.5% and bottom 2.5% of values of Z and regard the middle 95% as "close." So

 $P(-z_{.025} < Z < z_{.025}) = P(-1.96 < Z < 1.96) = .95$ 

• For m = 411.67 (one of the trials in our demo):  $z = \frac{411.67 - 500}{100/\sqrt{6}} = \frac{-88.33}{40.82} = -2.16$ which is outside of  $\pm 1.96$ , so m = 411.67 is "far" from  $\mu = 500$ .

- We will rearrange this equation to isolate  $\mu$ :  $P(-1.96 < Z < 1.96) = P(-1.96 < \frac{M - \mu}{\sigma/\sqrt{n}} < 1.96) = .95$
- Interpretation: in  $\approx 95\%$  of the trials of this experiment, the value M = m satisfies

$$-1.96 < \frac{m-\mu}{\sigma/\sqrt{n}} < 1.96$$

- Solve for bounds on  $\mu$  from the upper limit on Z:
  - $\frac{m-\mu}{\sigma/\sqrt{n}} < 1.96 \iff m-\mu < 1.96 \frac{\sigma}{\sqrt{n}} \iff m-1.96 \frac{\sigma}{\sqrt{n}} < \mu$ Notice the 1.96 turned into -1.96 and we get a lower limit on  $\mu$ .

• Also solve for an upper bound on  $\mu$  from the lower limit on Z:

- $-1.96 < \frac{m-\mu}{\sigma/\sqrt{n}} \quad \Leftrightarrow \quad -1.96 \frac{\sigma}{\sqrt{n}} < m-\mu \quad \Leftrightarrow \quad \mu < m+1.96 \frac{\sigma}{\sqrt{n}}$
- Together,  $m 1.96 \frac{\sigma}{\sqrt{n}} < \mu < m + 1.96 \frac{\sigma}{\sqrt{n}}$

• In  $\approx$  95% of the trials of this experiment, the value M = m satisfies  $m - 1.96 \frac{\sigma}{\sqrt{n}} < \mu < m + 1.96 \frac{\sigma}{\sqrt{n}}$ 

So,  $\approx 95\%$  of the time we perform this experiment, the true mean  $\mu$  is in the interval

$$\left(m-1.96\frac{\sigma}{\sqrt{n}}, m+1.96\frac{\sigma}{\sqrt{n}}\right)$$

which is called a (two-sided) 95% confidence interval.

• For a  $100(1 - \alpha)$ % C.I., use  $\pm z_{\alpha/2}$  instead of  $\pm 1.96$ .

#### Other commonly used percentages:

For a 99% confidence interval, use  $\pm 2.58$  instead of  $\pm 1.96$ . For a 90% confidence interval, use  $\pm 1.64$  instead of  $\pm 1.96$ .

#### For demo purposes:

For a 75% confidence interval, use  $\pm 1.15$  instead of  $\pm 1.96$ .

Example: Sample mean:

σ

95% CI half-width: 95% CI: Six scores 380, 260, 390, 630, 540, 440  $m = \frac{380+260+390+630+540+440}{6} = 440$ We assumed  $\sigma = 100$  at the beginning

 $1.96 \frac{\sigma}{\sqrt{n}} = \frac{(1.96)(100)}{\sqrt{6}} \approx 80.02$ (440 - 80.02, 440 + 80.02) = (359.98, 520.02) Has the true mean,  $\mu = 500$ .

75% CI half-width: 75% CI: 
$$\begin{split} 1.15 \frac{\sigma}{\sqrt{n}} &= \frac{(1.15)(100)}{\sqrt{6}} \approx 46.95 \\ (440 - 46.95, 440 + 46.95) &= (393.05, 486.95) \\ \end{split}$$
 Doesn't have the true mean,  $\mu = 500.$ 

 $\sigma = 100$  known,  $\mu = 500$  unknown, n = 6 points per trial, 20 trials

Confidence intervals not containing point  $\mu = 500$  are marked \*(393.05,486.95)\*.

| Trial # | $x_1$ | $x_2$ | $x_3$ | $X_4$ | $x_5$ | $x_6$ | $m = \bar{x}$ | 75% conf. int.    | 95% conf. int.    |
|---------|-------|-------|-------|-------|-------|-------|---------------|-------------------|-------------------|
| 1       | 720   | 490   | 660   | 520   | 390   | 390   | 528.33        | (481.38,575.28)   | (448.32,608.35)   |
| 2       | 380   | 260   | 390   | 630   | 540   | 440   | 440.00        | *(393.05,486.95)* | (359.98,520.02)   |
| 3       | 800   | 450   | 580   | 520   | 650   | 390   | 565.00        | *(518.05,611.95)* | (484.98,645.02)   |
| 4       | 510   | 370   | 530   | 290   | 460   | 540   | 450.00        | *(403.05,496.95)* | (369.98,530.02)   |
| 5       | 580   | 500   | 540   | 540   | 340   | 340   | 473.33        | (426.38,520.28)   | (393.32,553.35)   |
| 6       | 500   | 490   | 480   | 550   | 390   | 450   | 476.67        | (429.72,523.62)   | (396.65,556.68)   |
| 7       | 530   | 680   | 540   | 510   | 520   | 590   | 561.67        | *(514.72,608.62)* | (481.65,641.68)   |
| 8       | 480   | 600   | 520   | 600   | 520   | 390   | 518.33        | (471.38,565.28)   | (438.32,598.35)   |
| 9       | 340   | 520   | 500   | 650   | 400   | 530   | 490.00        | (443.05,536.95)   | (409.98,570.02)   |
| 10      | 460   | 450   | 500   | 360   | 600   | 440   | 468.33        | (421.38,515.28)   | (388.32,548.35)   |
| 11      | 540   | 520   | 360   | 500   | 520   | 640   | 513.33        | (466.38,560.28)   | (433.32,593.35)   |
| 12      | 440   | 420   | 610   | 530   | 490   | 570   | 510.00        | (463.05,556.95)   | (429.98,590.02)   |
| 13      | 520   | 570   | 430   | 320   | 650   | 540   | 505.00        | (458.05,551.95)   | (424.98,585.02)   |
| 14      | 560   | 380   | 440   | 610   | 680   | 460   | 521.67        | (474.72,568.62)   | (441.65,601.68)   |
| 15      | 460   | 590   | 350   | 470   | 420   | 740   | 505.00        | (458.05,551.95)   | (424.98,585.02)   |
| 16      | 430   | 490   | 370   | 350   | 360   | 470   | 411.67        | *(364.72,458.62)* | *(331.65,491.68)* |
| 17      | 570   | 610   | 460   | 410   | 550   | 510   | 518.33        | (471.38,565.28)   | (438.32,598.35)   |
| 18      | 380   | 540   | 570   | 400   | 360   | 500   | 458.33        | (411.38,505.28)   | (378.32,538.35)   |
| 19      | 410   | 730   | 480   | 600   | 270   | 320   | 468.33        | (421.38,515.28)   | (388.32,548.35)   |
| 20      | 490   | 390   | 450   | 610   | 320   | 440   | 450.00        | *(403.05,496.95)* | (369.98,530.02)   |

 $\sigma = 100$  known,  $\mu = 500$  unknown, n = 6 points per trial, 20 trials

- In the 75% confidence interval column, 14 out of 20 (70%) intervals contain the mean ( $\mu = 500$ ). This is close to 75%.
- In the 95% confidence interval column, 19 out of 20 (95%) intervals contain the mean (μ = 500). This is exactly 95% (though if you do it 20 more times, it wouldn't necessarily be exactly 19 the next time).
- A k% confidence interval means if we repeat the experiment a lot of times, *approximately* k% of the intervals will contain μ.
   It is *not* a guarantee that exactly k% will contain it.
- Note: If you really don't know the true value of μ, you can't actually mark the intervals that do or don't contain it.

## Confidence intervals: choosing *n*

- For a smaller width 95% confidence interval, increase *n*.
- For example, to make the 95% confidence interval be (m-10, m+10) or smaller, we need

 $1.96\sigma/\sqrt{n} \leq 10$ 

SO

 $\sqrt{n} \ge 1.96\sigma/10 = 1.96(100)/10 = 19.6$  $n \ge 19.6^2 = 384.16$ 

 $n \ge 385$ 

## One-sided confidence intervals

In a two-sided 95% confidence interval, we exclude the highest and lowest 2.5% of values and keep the middle 95%. One-sided removes the whole 5% from one side.



• One-sided to the right: remove the highest (right) 5% values of Z

 $P(Z < z_{.05}) = P(Z < 1.64) = .95$ 

 $\approx$ 95% of experiments have  $\frac{m-\mu}{\sigma/\sqrt{n}} < 1.64$ , so  $\mu > m - 1.64 \frac{\sigma}{\sqrt{n}}$ So the one-sided (right) 95% CI for  $\mu$  is  $(m - 1.64 \frac{\sigma}{\sqrt{n}}, \infty)$ 

• One-sided to the left: remove lowest (left) 5% of values of Z

 $P(-z_{.05} < Z) = P(-1.64 < Z) = .95$ 

The one-sided (left) 95% CI for  $\mu$  is  $(-\infty, m+1.64\frac{\sigma}{\sqrt{n}})$ 

## 5.3 Confidence intervals for p in the binomial distribution

- An election has two options, A and B.
- There are no other options and no write-ins.
- In the election: p is the fraction of votes cast for A,
  - 1-p is the fraction of votes cast for *B*.

In a poll beforehand:  $\hat{p}$ 

is the fraction polled who say they'll vote for *A*.

- A single point estimate of p is denoted p̂.
   We also want a 95% confidence interval for it.
- We model this by sampling from an urn
  - without replacement (hypergeometric distribution)
  - or with replacement (binomial distribution).

However, this an imperfect model for a poll (sample may not be representative; sample may have non-voters; people may change their minds after the poll; etc.)

## Estimating *p* for a poll with binomial distribution

- A poll should use the hypergeometric distribution (sampling without replacement), but we approximate it by the binomial distribution (sampling with replacement).
- Let *p* be the fraction of votes for *A* out of all votes. The probability *k* out of *n* in the sample say they'll vote for *A* is  $P(X = k) = {n \choose k} p^k (1 - p)^{n-k}.$
- The fraction of people polled who say they'll vote for A is  $\widehat{P} = \overline{X} = X/n$ , with  $E(\overline{X}) = p$  and  $Var(\overline{X}) = p(1-p)/n$ .
- The ^ (caret) notation indicates it's a point estimate.
   We already use P for too many things, so we'll use the X notation.

# Estimating *p*

## Point estimate of *p*

Poll 1000 people out of a much larger population.

Get 700 voting for *A*, 300 for *B*.

A point estimate of *p* (the fraction voting for *A*) is  $\hat{p} = \frac{700}{1000} = .7$ 

## Interval estimate of *p*

• We could get a 95% confidence interval for p by using the formula

$$\left(\bar{x} - 1.96\frac{\sigma}{\sqrt{n}}, \bar{x} + 1.96\frac{\sigma}{\sqrt{n}}\right) = \left(\hat{p} - 1.96\frac{\sqrt{p(1-p)}}{\sqrt{n}}, \hat{p} + 1.96\frac{\sqrt{p(1-p)}}{\sqrt{n}}\right)$$

where we plugged in  $\bar{x} = \hat{p}$  and  $\sigma = SD(X_i) = \sqrt{p(1-p)}$ .

• But that involves p, which is unknown! We'll use two methods to deal with that. First, estimate p by  $\hat{p}$  in the SD to get

$$\left(\hat{p}-1.96rac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}},\hat{p}+1.96rac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}
ight)$$

as an approximate 95% confidence interval for p.

• For  $\hat{p} = .7$ , we get  $\sqrt{\hat{p}(1-\hat{p})/n} = \sqrt{.7(.3)/1000} \approx .01449$ . This gives 95% Cl (.7 - 1.96(.01449), .7 + 1.96(.01449)) = (.672, .728)

## Interval estimate of p using margin of error

- Polls often report a margin of error instead of a confidence interval.
- The half-width of the 95% confidence interval is  $1.96 \sqrt{p(1-p)/n}$ , and before we estimated p by the point estimate  $\hat{p}$ .
- The margin of error is the maximum that this half-width could be over all possible values of p ( $0 \le p \le 1$ ); this is at p = 1/2, giving margin of error  $1.96 \sqrt{(1/2)(1/2)/n} = 1.96/(2\sqrt{n})$ .
- Maximize p(1-p) on  $0 \le p \le 1$ :

$$0 = \frac{d}{dp}(p - p^2) = 1 - 2p$$
 at  $p = \frac{1}{2}$ 

$$\frac{d^2}{dp^2}(p-p^2) = -2 < 0 \Rightarrow \text{maximum}$$



## Interval estimate of *p* using margin of error

- The margin of error is the maximum possible half-width,  $1.96 \sqrt{(1/2)(1/2)/n} = 1.96/(2\sqrt{n}).$
- With 1000 people, the margin of error is  $1.96/(2\sqrt{1000}) \approx .03099$ , or about 3%. With 700 A's, report  $\hat{p} = .70 \pm .03$ .
- A 3% margin of error means that if a large number of polls are conducted, each on 1000 people, then at least 95% of the polls will give values of  $\hat{p}$  such that the true p is between  $\hat{p} \pm 0.03$ .
- The reason it is "at least 95%" is that  $1.96 \sqrt{p(1-p)/n} \le 0.03$  and only = 0.03 when p = 1/2 exactly.

If the true *p* is not equal to 1/2, then  $\frac{0.03}{\sqrt{p(1-p)/n}} > 1.96$  so it would be a higher percent confidence interval than 95%.

## Choosing *n* to get desired margin of error

- Question: How many people should be polled for a 2% margin of error?
- Answer: Solve  $1.96/(2\sqrt{n}) = .02$ :  $n = (1.96/(2(0.02)))^2 = 49^2 = 2401$
- This means that if many polls are conducted, each with 2401 people, at least 95% of the polls will give values of  $\hat{p}$  such that the true value of p is between  $\hat{p} \pm 0.02$ .

## 5.4 Sample variance $s^2$ : estimating $\sigma^2$ from data

- Consider data 1, 2, 12.
- The sample mean is  $\bar{x} = \frac{1+2+12}{3} = 5$ .
- The deviations of the data from the mean are  $x_i \bar{x}$ :

1-5, 2-5, 12-5 = -4, -3, 7

- The deviations must sum to 0 since  $(\sum_{i=1}^{n} x_i) n\bar{x} = 0$ . Knowing any n - 1 of the deviations determines the missing one.
- We say there are n-1 degrees of freedom, or df = n-1.
- Here, there are 2 degrees of freedom, and the sum of squared deviations is

 $ss = (-4)^2 + (-3)^2 + 7^2 = 16 + 9 + 49 = 74$ 

- The sample variance is  $s^2 = ss/df = 74/2 = 37$ . It is a point estimate of  $\sigma^2$ .
- The sample standard deviation is  $s = \sqrt{s^2} = \sqrt{37} \approx 6.08$ , which is a point estimate of  $\sigma$ .

## Sample variance: estimating $\sigma^2$ from data

## Definitions

Sum of squared deviations: 
$$ss = \sum_{i=1}^{n} (x_i - \bar{x})^2$$
  
Sample variance:  $s^2 = \frac{ss}{n-1} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$   
Sample standard deviation:  $s = \sqrt{s^2}$ 

- It turns out that  $E(S^2) = \sigma^2$ , so  $s^2$  is an *unbiased estimator* of  $\sigma^2$ .
- For the sake of demonstration, let  $u^2 = \frac{ss}{n} = \frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})^2$ . It turns out that  $E(U^2) = \frac{n-1}{n}\sigma^2$ , so  $u^2$  is a *biased estimator* of  $\sigma^2$ .
- This is because  $\sum_{i=1}^{n} (x_i \bar{x})^2$  underestimates  $\sum_{i=1}^{n} (x_i \mu)^2$ .

| Estimating $\mu$ and $\sigma^2$ from sample data (secret: $\mu = 500$ , $\sigma = 100$ ) |       |                       |                       |       |            |                       |             |          |          |  |
|------------------------------------------------------------------------------------------|-------|-----------------------|-----------------------|-------|------------|-----------------------|-------------|----------|----------|--|
| Exp. #                                                                                   | $x_1$ | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | $x_4$ | <i>X</i> 5 | <i>x</i> <sub>6</sub> | $  \bar{x}$ | $s^2$    | $u^2$    |  |
| 1                                                                                        | 550   | 600                   | 450                   | 400   | 610        | 500                   | 518.33      | 7016.67  | 5847.22  |  |
| 2                                                                                        | 500   | 520                   | 370                   | 520   | 480        | 440                   | 471.67      | 3376.67  | 2813.89  |  |
| 3                                                                                        | 470   | 530                   | 610                   | 370   | 350        | 710                   | 506.67      | 19426.67 | 16188.89 |  |
| 4                                                                                        | 630   | 620                   | 430                   | 470   | 500        | 470                   | 520.00      | 7120.00  | 5933.33  |  |
| 5                                                                                        | 690   | 470                   | 500                   | 410   | 510        | 360                   | 490.00      | 12840.00 | 10700.00 |  |
| 6                                                                                        | 450   | 490                   | 500                   | 380   | 530        | 680                   | 505.00      | 10030.00 | 8358.33  |  |
| 7                                                                                        | 510   | 370                   | 480                   | 400   | 550        | 530                   | 473.33      | 5306.67  | 4422.22  |  |
| 8                                                                                        | 420   | 330                   | 540                   | 460   | 630        | 390                   | 461.67      | 11736.67 | 9780.56  |  |
| 9                                                                                        | 570   | 430                   | 470                   | 520   | 450        | 560                   | 500.00      | 3440.00  | 2866.67  |  |
| 10                                                                                       | 260   | 530                   | 330                   | 490   | 530        | 630                   | 461.67      | 19296.67 | 16080.56 |  |
| Average 4                                                                                |       |                       |                       |       |            |                       | 490.83      | 9959.00  | 8299.17  |  |

- We used n = 6, repeated for 10 trials, to fit the slide. Larger values of n would be better in practice.
- Average of sample means:  $490.83 \approx \mu = 500$ .
- Average of sample variances:  $9959.00 \approx \sigma^2 = 10000$ .
- $u^2$ , using the wrong denominator n = 6 instead of n 1 = 5, gave an average 8299.17  $\approx \frac{n-1}{n}\sigma^2 = 8333.33$ .

24 / 31

## Proof that denominator n-1 makes $s^2$ unbiased

• Expand the i = 1 term of  $SS = \sum_{i=1}^{n} (X_i - \overline{X})^2$ :  $E((X_1 - \overline{X})^2) = E(X_1^2) + E(\overline{X}^2) - 2E(X_1\overline{X})$ 

• 
$$\operatorname{Var}(X) = E(X^2) - E(X)^2 \Rightarrow E(X^2) = \operatorname{Var}(X) + E(X)^2$$
. So  
 $E(X_1^2) = \sigma^2 + \mu^2 \qquad E(\overline{X}^2) = \operatorname{Var}(\overline{X}) + E(\overline{X}^2) = \frac{\sigma^2}{n} + \mu^2$ 

• Cross-term:

$$E(X_1\overline{X}) = \frac{E(X_1^2) + E(X_1)E(X_2) + \dots + E(X_1)E(X_n)}{n}$$
  
=  $\frac{(\sigma^2 + \mu^2) + (n-1)\mu^2}{n} = \frac{\sigma^2}{n} + \mu^2$ 

• Total for i = 1 term:

$$E((X_1 - \overline{X})^2) = \left(\sigma^2 + \mu^2\right) + \left(\frac{\sigma^2}{n} + \mu^2\right) - 2\left(\frac{\sigma^2}{n} + \mu^2\right) = \frac{n-1}{n}\sigma^2$$

## Proof that denominator n-1 makes $s^2$ unbiased

• Similarly, term *i* of 
$$SS = \sum_{i=1}^{n} (X_i - \overline{X})^2$$
 expands to  
 $E((X_i - \overline{X})^2) = \frac{n-1}{n}\sigma^2$ 

The total is

$$E(SS) = (n-1)\sigma^2$$

• Thus we must divide SS by n-1 instead of n to get an estimate of  $\sigma^2$  (called an *unbiased estimator* of  $\sigma^2$ ).

$$E\left(\frac{SS}{n-1}\right) = \sigma^2$$

 $E\left(\frac{SS}{n}\right) = \frac{n-1}{n}\sigma^2$ 

• If we divided by *n* instead, it would come out to

which is called a *biased estimator*.

## More formulas for sample mean and variance

• Let  $x_1, \ldots, x_n$  be *n* data points. We already saw these formulas: Sample mean: Sample variance: Sample standard deviation:  $m = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$   $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - m)^2$ Sample standard deviation:  $s = \sqrt{s^2}$ 

• By plugging the formula for m into the formula for  $s^2$  and manipulating it, it can be shown that

$$s^{2} = \frac{n\left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n(n-1)}$$

• This is a useful shortcut in calculators and statistical software.

## Efficient formula for sample variance

- Some calculators have a feature to let you type in a list of numbers and compute their sample mean and sample standard deviation.
- For the numbers 10, 20, 30, 40:

| n | $x_n$ | $\sum_{i=1}^{n} x_i$ | $\sum_{i=1}^{n} x_i^2$ |
|---|-------|----------------------|------------------------|
| 1 | 10    | 10                   | 100                    |
| 2 | 20    | 30                   | 500                    |
| 3 | 30    | 60                   | 1400                   |
| 4 | 40    | 100                  | 3000                   |

The calculator only keeps track of *n* and running totals  $\sum x_i$ ,  $\sum x_i^2$ .

- The sample mean is  $m = (\sum_{i=1}^{n} x_i)/n = 100/4 = 25$ .
- The sample variance and sample standard deviation are

$$s^{2} = \frac{n\left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n(n-1)} = \frac{4(3000) - (100)^{2}}{4(3)} \approx 166.67$$
$$s = \sqrt{500/3} \approx 12.91$$

• With the formula  $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - m)^2$ , the calculator has to store all the numbers, then compute *m*, then compute *s*.

28/31

## Grouped data (also called binned data)

• The CAPE questionnaire asks how many hours a week you spend on a class. Suppose the number of answers in each category is

| # hours/week | Frequency (f <sub>i</sub> ) | Midpoint of interval (m <sub>i</sub> ) |
|--------------|-----------------------------|----------------------------------------|
| 0–1          | 2                           | .5                                     |
| 2–3          | 20                          | 2.5                                    |
| 4–5          | 31                          | 4.5                                    |
| 6–7          | 11                          | 6.5                                    |
| 8–9          | 3                           | 8.5                                    |
| 10–11        | 1                           | 10.5                                   |
| 12–13        | 5                           | 12.5                                   |
| Total:       | n = 73                      |                                        |

- This question on the survey has k = 7 groups into which the n = 73 students are placed.
- Assume all students in the 0–1 hrs/wk category are .5 hrs/wk; all students in the 2–3 hrs/wk category are 2.5 hrs/wk; etc.
- Treat it as a list of two .5's, twenty 2.5's, thirty one 4.5's, etc.

## Grouped data (also called binned data)

| <pre># hours/week</pre> | Frequency (f <sub>i</sub> ) | Midpoint of interval (m <sub>i</sub> ) |
|-------------------------|-----------------------------|----------------------------------------|
| 0–1                     | 2                           | .5                                     |
| 2–3                     | 20                          | 2.5                                    |
| 4—5                     | 31                          | 4.5                                    |
| 6–7                     | 11                          | 6.5                                    |
| 8–9                     | 3                           | 8.5                                    |
| 10–11                   | 1                           | 10.5                                   |
| 12–13                   | 5                           | 12.5                                   |
| Total:                  | n = 73                      |                                        |

#### • Sample mean:

 $\frac{1}{73} \left( 2(.5) + 20(2.5) + 31(4.5) + 11(6.5) + 3(8.5) + 1(10.5) + 5(12.5) \right) = 4.9384 \text{ hours/week}$ 

#### • Sample variance and SD:

 $s^{2} = \frac{1}{72} \left( 2(.5 - 4.94)^{2} + 20(2.5 - 4.94)^{2} + \dots + 5(12.5 - 4.94)^{2} \right)$ = 7.5830 hours<sup>2</sup>/week<sup>2</sup>

$$s = \sqrt{7.5830} = 2.7537$$
 hours/week

## Grouped data — errors in this method

- The bins on the CAPE survey should be widened to cover all possibilities (for example, where does 7.25 go?)
   Fix it by expanding the bins: e.g., 2–3 becomes 1.5–3.5.
- Treating all students in the 2–3 hours/week category (which should be 1.5–3.5) as 2.5 hours/week is only an approximation; for each student in this category, this is off by up to ±1.
  - In computing the grouped sample mean, it is assumed that such errors balance out.
  - In computing the grouped sample variance, these errors are not taken into consideration. A different formula could be used to take that into account.