6.1–6.4 Hypothesis tests

Prof. Tesler

Math 186 Winter 2019

Prof. Tesler

6.1–6.2 Intro to hypothesis tests and decision rules

Hypothesis tests are a specific way of designing experiments to quantitatively study questions like these:

- Is a coin fair or biased? Is a die fair or biased?
- Does a gasoline additive improve mileage?
- Is a drug effective?
- Did Mendel fudge the data in his pea plant experiments?
- Sequence alignment (BLAST): are two DNA sequences similar by chance or is there evolutionary history to explain it?
- DNA/RNA microarrays:
 - Which allele of a gene present in a sample?
 - Does the expression level of a gene change in different cells?
 - Does a medication influence the expression level?

- In a criminal trial, the jury considers two hypotheses: innocent or guilty.
- Sometimes the evidence is clear-cut and sometimes it's ambiguous.
- **Burden of proof:** If it's ambiguous, we assume innocent. Overwhelming evidence is needed to declare guilt.
- Mathematical language for this:

Hypotheses

- "Null hypothesis" *H*₀: Innocent
- "Alternative hypothesis" H_1 : Guilty

The null hypothesis, H_0 , is given the benefit of the doubt in ambiguous cases.

Example — Evaluating an SAT prep class

- Assume that SAT math scores are normally distributed with $\mu_0 = 500$ and $\sigma_0 = 100$.
- An SAT prep class claims it improves scores. Is it effective?
- If *n* people take the class, and after the class their average score is \bar{x} , what values of *n* and \bar{x} would be convincing proof?
- $\bar{x} = 502$ and n = 10Not convincing. It's probably due to ordinary variability.
- $\bar{x} = 502$ and n = 1000000Convincing, although a 2 point improvement is not impressive.
- $\bar{x} = 600$ and n = 1

Not convincing. It's just one student, who might have had a high score anyway.

- $\bar{x} = 600$ and n = 100Convincing.
- $\bar{x} = 300$ and n = 100

Oops, the class made them worse!

• We need to judge these values in a quantifiable, systematic way.

Example — Evaluating an SAT prep class

Definitions

- $\mu_0 = 500$ is the average score without the class.
- μ is the theoretical average score after the class (we don't know this value however).
- x̄ is the sample mean in our experiment (average score of our sample of students who took the class).
- If x̄ is high, it probably is because the class increases scores, so the theoretical mean (μ) increased, thus increasing the sample mean (x̄). But it's possible that the class has no effect (μ = μ₀) and we accidentally picked a sample with x̄ unusually high.
- We assume that the scores have a normal distribution with $\sigma = \sigma_0 = 100$ with or without the class, and only consider the possibility that the class changes the mean μ .
- Later, in Chapter 7, we'll also account for changes in σ .

Hypotheses

Goal: Decide between these two hypotheses

- "Null hypothesis": The class has no effect. (Any substantial deviation of x̄ from μ₀ is natural, due to chance.)
 H₀: μ = 500 (general format: H₀: μ = μ₀)
- "Alternative hypothesis": The class improves the score. (Deviation from μ_0 is caused by the prep class.)

 $H_1: \mu > 500$ (general format: $H_1: \mu > \mu_0$)

- **Burden of proof**: Since it may be ambiguous, we assume H_0 unless there is overwhelming evidence of H_1 .
- It's possible that neither hypothesis is true (for example, the distribution isn't normal; the class actually lowers the score; etc.) but the basic procedure doesn't consider that possibility.

Example — Evaluating an SAT prep class

Decision procedure (first draft)

• Pick a class of n = 25 people, and let \bar{x} be their average score after taking the class.

 \bar{x} is the *test statistic*; the decision is based on \bar{x} .

- If $\bar{x} \ge 510$, then reject H_0 (also called "reject the null hypothesis," "accept H_1 ," or "accept the alternative hypothesis").
- If $\bar{x} < 510$ then accept H_0 (or "insufficient evidence to reject H_0 ")

- The *critical region* is the values of the test statistic leading to rejecting H_0 ; here, it's $\bar{x} \ge 510$.
- The cutoff of 510 was chosen arbitrarily for this first draft. We will see its impact and how to choose a better cutoff.

Assess the error rate of this procedure

- A *Type I error* is accepting H_1 when H_0 is true.
- A *Type II error* is accepting H_0 when H_1 is true.
- First, we will focus on controlling the *Type I error rate,* α : $\alpha = P(\text{accept } H_1 | H_0 \text{ true}) = P(\overline{X} \ge 510 | \mu = 500)$ (Later, we will see how to control the Type II error rate.)

• Convert
$$\bar{x}$$
 to z-score $z = \frac{\bar{x} - \mu}{\sigma/\sqrt{n}} = \frac{\bar{x} - 500}{100/\sqrt{25}}$:
 $\alpha = P\left(\frac{\bar{X} - 500}{100/\sqrt{25}} \ge \frac{510 - 500}{100/\sqrt{25}}\right)$
 $= P(Z \ge .5)$
 $= 1 - \Phi(.5) = 1 - .6915 = .3085$

Critical region

- In each graph, the shaded area is .3085 = 30.85%.
- When H₀ (µ = 500) is true, about 30.85% of 25 person samples will have an average score ≥ 510, and thus will be misclassified by this procedure.
- This test has an $\alpha = .3085$ *significance level*, which is very large.

How to choose the cutoff in the decision procedure

- Choose the *significance level*, α, first. Typically, α = 0.05 or 0.01. Then compute the cutoff x that achieves that significance level, so that if H₀ is true, then at most a fraction α of cases will be misclassified as H₁ (a Type I error).
- We'll still use n = 25 people, but we want to find the cutoff for a significance level $\alpha = .05$.
- Solve $\Phi(z_{.05}) = .95$: $\Phi(1.64) = .95$ so $z_{.05} = 1.64$. (For two-sided 95% confidence intervals, we used $z_{.025} = 1.96$.)
- Find the value \bar{x}^* with *z*-score 1.64. It's called the *critical value*, and we reject H_0 when $\bar{x} \ge \bar{x}^*$.

$$\frac{\bar{x}^* - 500}{100/\sqrt{25}} = 1.64$$

SO

$$\bar{x}^* = 500 + 1.64 \cdot (100/\sqrt{25}) = 532.8$$

SAT prep class — Decision procedure (second draft)

Decision procedure for 5% significance level

- Pick a class of n = 25 people, and let \bar{x} be their average score after taking the class.
- If $\bar{x} \ge 532.8$ then reject H_0 .
- If $\bar{x} < 532.8$ then accept H_0 .
- The values of \bar{x} for which we reject H_0 form the *one-sided critical region*: [532.8, ∞).
- The values of \bar{x} for which we accept H_0 form the *one-sided* acceptance region for μ under H_0 : $(-\infty, 532.8)$.

SAT prep class — Decision procedure (second draft)

Reject H_0 if \bar{x} in one-sided critical region [532.8, ∞).

Area = α = .05

Accept H_0 if \bar{x} in one-sided 95% acceptance region for H_0 $(-\infty, 532.8)$. Area = $1 - \alpha = .95$

Type II error rate

- We designed the experiment to achieve a Type I error rate 5%.
- What is the Type II error rate (β)? For example, what fraction of the time will this procedure fail to recognize that μ rose to 530 (since that's just below 532.8)? Compute

$$3 = P(\text{Accept } H_0 | H_1 \text{ is true, with } \mu = 530) \\ = P(\overline{X} < 532.8 | \mu = 530)$$

• When $\mu = 530$, the *z*-score is not $\frac{\bar{x}-500}{100/\sqrt{25}}$; it's $z' = \frac{\bar{x}-530}{100/\sqrt{25}}$. So

$$3 = P(\overline{X} < 532.8 | \mu = 530)$$

= $P\left(\frac{\overline{X} - 530}{100/\sqrt{25}} < \frac{532.8 - 530}{100/\sqrt{25}}\right) = P(Z' < .14) = .5557$

β is more complicated to define than α, because β depends on the value of the unknown parameter (μ = 530 in this case), whereas for α the parameter value (μ = 500) is specified in H₀.

Variation (a): One-sided to the right (what we did)

Hypotheses: H_0 : $\mu = 500$ vs. H_1 : $\mu > 500$.

Decision: Reject H_0 if $z \ge z_{\alpha}$. Equivalently, reject H_0 if $\overline{x} \ge 500 + z_{\alpha} \frac{\sigma}{\sqrt{n}}$.

Decision for $\alpha = 0.05$, $\sigma = 100$, n = 25: Reject H_0 if $z \ge 1.64$.

Equivalently, reject H_0 if $\bar{x} \ge 500 + 1.64(\frac{100}{\sqrt{25}}) = 532.8$.

Critical region:

Gives an area α on the right.

Variation (b): One-sided to the left

Hypotheses: H_0 : $\mu = 500$ vs. H_1 : $\mu < 500$. **Decision:** Reject H_0 if $z < -z_{\alpha}$. Equivalently, reject H_0 if $\bar{x} \leq 500 - z_{\alpha} \frac{\sigma}{\sqrt{n}}$. **Decision for** $\alpha = 0.05$, $\sigma = 100$, n = 25: Reject H_0 if $z \leq -1.64$. Equivalently, reject H_0 if $\bar{x} \leq 500 - 1.64(\frac{100}{\sqrt{25}}) = 467.2$.

Critical region:

Gives an area α on the left.

Variation (c): Two-sided

Hypotheses: H_0 : $\mu = 500$ vs. H_1 : $\mu \neq 500$. **Decision:** Reject H_0 if $|z| \ge z_{\alpha/2}$. Equivalently, reject H_0 unless \bar{x} is between $500 \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$.

Decision for $\alpha = 0.05$, $\sigma = 100$, n = 25: Reject H_0 if $|z| \ge 1.96$. Equivalently, reject H_0 unless \bar{x} is between $500 \pm 1.96 \frac{100}{\sqrt{25}} = (460.8, 539.2)$

Critical region:

Gives an area α split up as $\alpha/2$ on each side.

Variations — Summary

 $\alpha/2 = 2.5\%$ at the left.

- "500" and "5%" can be replaced by other constant values.
- Important values of z_{α} (look up others in the table in the book):

$$\alpha = .01$$
 $\alpha = .05$ $\alpha = .10$ One-sided $z_{.01} \approx 2.33$ $z_{.05} \approx 1.64$ $z_{.10} \approx 1.28$ Two-sided $z_{.005} \approx 2.58$ $z_{.025} \approx 1.96$ $z_{.05} \approx 1.64$

- Another way to do hypothesis tests. Makes the same conclusions.
- A Type I error is accepting H_1 when H_0 is really true.
- This happens because we got an unusually bad sample, where the test statistic accidentally falls in the critical region.
- Given a sample with a particular test statistic, its *P-value* is the probability to draw another sample with an even worse test statistic (meaning more supportive than the current sample of making the incorrect decision "Accept H₁" / "Reject H₀").

P-values

• Suppose our sample has $\bar{x} = 510$.

- Samples supporting H_1 / opposing H_0 as much or more than this one are those with $\bar{x} \ge 510$.
- We showed $\bar{x} \ge 510$ for $\approx 30.85\%$ of all samples when H_0 is true:

$$P(\overline{X} \ge 510|H_0) = P\left(\frac{\overline{X} - 500}{100/\sqrt{25}} \ge \frac{510 - 500}{100/\sqrt{25}}\right)$$
$$= P(Z \ge .5) = 1 - \Phi(.5) = 1 - .6915 = .3085$$

• The *P*-value of $\bar{x} = 510$ is P = .3085 = 30.85%.

P-values

Consider H_0 : $\mu = 500$ vs. H_1 : $\mu > 500$ with $\sigma = 100$ and n = 25

- This means the probability under H_0 of seeing a value "at least as extreme" as $\bar{x} = 510$ is 30.85%.
- For other decision procedures, the definition of "at least this extreme" (more supportive of H_1 , less supportive of H_0) depends on the hypotheses.
- The *z*-score of $\bar{x} = 510$ under H_0 is $z = \frac{510-500}{100/\sqrt{25}} = \frac{10}{20} = .5$. H_1 says what it means to be at least that extreme:

(a)
$$H_0: \mu = 500$$
 vs. $H_1: \mu > 500.$
 $P = P(\overline{X} \ge 510) = P(Z \ge .5) = 1 - \Phi(.5) = 1 - .6915 = .3085$

(b)
$$H_0: \mu = 500$$
 vs. $H_1: \mu < 500.$
 $P = P(\overline{X} \le 510) = P(Z \le .5) = \Phi(.5) = .6915$

(c)
$$H_0: \mu = 500$$
 VS. $H_1: \mu \neq 500.$
 $P = P(\overline{X} \ge 510) + P(\overline{X} \le 490)$
 $= P(|Z| \ge .5) = P(Z \ge .5) + P(Z \le -.5) = .3085 + .3085 = .6170$

P-values for $\bar{x} = 510$ (z = .5) for different H_1 's

(a) H_0 :	$\mu = 500$
H_1 :	$\mu > 500$

 $P = P(Z \ge .5)$ = 1 - $\Phi(.5)$ = 1 - .6915 = .3085

(b)
$$H_0$$
: $\mu = 500$
 H_1 : $\mu < 500$

$$P = P(Z \le .5)$$
$$= \Phi(.5)$$

= .6915

(c) H_0 : $\mu = 500$ H_1 : $\mu \neq 500$

$$P = P(|Z| \ge .5)$$

$$=2P(Z \ge .5)$$

$$= 2(.3085)$$

= .6170

P-values

- In terms of *P*-values, the decision procedure is *"Reject H*₀ *if P* $\leq \alpha$ *."*
- Interpretation: Suppose $P \leq \alpha$. If H_0 holds, events at least this extreme are rare, occurring $\leq (100\alpha)\%$ of the time. But if H_1 holds, there's a much higher probability of test statistics in this range. Since we observed this event, H_1 is more plausible.
 - (a) P=0.3085. When H_0 holds, about 30.85% of samples have $\overline{X} \ge 510$.
 - (b) P=0.6915. When H_0 holds, about 69.15% of samples have $\overline{X} \leqslant 510$.
 - (c) P=0.6170. When H_0 holds, about 61.70% of samples have either $\overline{X} \ge 510$ or $\overline{X} \le 490$.
- At the α = .05 significance level, we accept H₀ in all three cases since P > .05. Events this "extreme" are very common under H₀, so this does not provide convincing evidence against H₀.

P-values for $\bar{x} = 536$

• Suppose
$$n = 25$$
 and $\bar{x} = 536$.

• Then
$$z = \frac{536 - 500}{100 / \sqrt{25}} = \frac{36}{20} = 1.8$$

(a) H_0 : $\mu = 500$ vs. H_1 : $\mu > 500$

- The *P*-value is $P = P(Z \ge 1.8) = 1 \Phi(1.8) = 1 .9641 = .0359$.
- If H₀ is true, only 3.59% of the time would we get a score this extreme or worse.
- At $\alpha = .05$, we reject H_0 , since $P \leq \alpha$: $.0359 \leq .05$.
- At α = .01, we accept H₀ since P > α: .0359 > .01.
 Another interpretation is we do not have sufficient evidence to reject H₀ at significance level α = .01.

• Suppose
$$n = 25$$
 and $\overline{X} = 536$.

• Then
$$z = \frac{536 - 500}{100 / \sqrt{25}} = \frac{36}{20} = 1.8$$

(c) H_0 : $\mu = 500$ vs. H_1 : $\mu \neq 500$

• The *P*-value is $P = P(|Z| \ge 1.8) = 2(.0359) = .0718$

• Accept H_0 at both .01 and .05 significance levels since .0718 > .01 and .0718 > .05.

Advantages of *P*-values over critical values for hypothesis tests

- P-values give a continuous scale, so if you're near the arbitrary cutoff, you know it.
- *P*-values allow you to test against cutoffs for several α 's simultaneously. We could compute the critical values of \bar{x} for $\alpha = 0.01, 0.05$, etc., but this saves some steps.
- *P*-values can be defined for any statistical distribution, not just the normal distribution, so hypothesis tests for any distribution can be formulated as "Reject H_0 if $P \leq \alpha$."
- You can pick up a scientific paper that uses any statistical distribution, even a distribution you don't yet know, and still understand the results if they are expressed using *P*-values. Otherwise, for each new test statistic, you have to learn the details of the test and how to interpret the test statistic.

Sec. 6.3. Hypothesis tests for the binomial distribution

Consider a coin with probability p of heads, 1 - p of tails. Warning: do not confuse this with the P from P-values.

Two-sided hypothesis test: Is the coin fair?

Null hypothesis:	$H_0: p = .5$	("coin is fair")
Alternative hypothesis:	$H_1: p \neq .5$	("coin is not fair")

Draft of decision procedure

- Flip a coin 100 times.
- Let *X* be the number of heads.
- If *X* is "close" to 50 then it's fair, and otherwise it's not fair.

How do we quantify "close"?

Decision procedure — confidence interval How do we quantify "close"?

Form a 95% confidence interval for the expected # of heads:

$$n = 100, p = 0.5$$

 $\mu = np = 100(.5) = 50$
 $\sigma = \sqrt{np(1-p)} = \sqrt{100(.5)(1-.5)} = \sqrt{25} = 5$

Using the normal approximation, the 95% confidence interval is

$$\begin{array}{rl} (\mu-1.96\sigma,\mu+1.96\sigma) = & (50-1.96\cdot5\ ,\ 50+1.96\cdot5) \\ = & (40.2\ ,\ 59.8) \end{array}$$

Check that it's OK to use the normal approximation

$$\label{eq:masses} \begin{split} \mu - 3\sigma &= 50 - 15 = 35 > 0 \\ \mu + 3\sigma &= 50 + 15 = 65 < 100 \quad \text{so it is OK}. \end{split}$$

Prof. Tesler

6.1–6.4 Hypothesis tests

Hypotheses

Null hypothesis: H_0 : p = .5 ("coin is fair") Alternative hypothesis: H_1 : $p \neq .5$ ("coin is not fair")

Decision procedure

- Flip a coin 100 times.
- Let *X* be the number of heads.
- If 40.2 < X < 59.8 then accept H_0 ; otherwise accept H_1 .

Significance level: $\approx 5\%$

If H_0 is true (coin is fair), this procedure will give the wrong answer (H_1) about 5% of the time.

Measuring Type I error (a.k.a. Significance Level) H_0 is the true state of nature, but we mistakenly reject H_0 / accept H_1

- If this were truly the normal distribution, the Type I error would be $\alpha = .05 = 5\%$ because we made a 95% confidence interval.
- However, the normal distribution is just an approximation; it's really the binomial distribution. So:

$$\alpha = P(\text{accept } H_1 | H_0 \text{ true})$$

$$= 1 - P(\text{accept } H_0 | H_0 \text{ true})$$

- = 1 P(40.2 < X < 59.8 | binomial with p = .5)
- $= 1 .9431120664 = 0.0568879336 \approx 5.7\%$

$$P(40.2 < X < 59.8 | p = .5) = \sum_{k=41}^{59} {\binom{100}{k}} (.5)^k (1 - .5)^{100-k}$$

= .9431120664

• So it's a 94.3% confidence interval and the Type I error rate is $\alpha = 5.7\%$.

- If p = .7, the test will probably detect it.
- If p = .51, the test will frequently conclude H_0 is true when it shouldn't, giving a high Type II error rate.
- If this were a game in which you won \$1 for each heads and lost \$1 for tails, there would be an incentive to make a biased coin with p just above .5 (such as p = .51) so it would be hard to detect.

Measuring Type II error Exact Type II error for p = .7 using binomial distribution

•
$$\beta = P(\text{Type II error with } p = .7)$$

=
$$P(\text{Accept } H_0 | X \text{ is binomial, } p = .7)$$

=
$$P(40.2 < X < 59.8 | X \text{ is binomial, } p = .7)$$

$$= \sum_{k=41}^{59} \binom{100}{k} (.7)^k (.3)^{100-k} = .0124984 \approx 1.25\%.$$

- When p = 0.7, the Type II error rate, β , is $\approx 1.25\%$: $\approx 1.25\%$ of decisions made with a biased coin (specifically biased at p = 0.7) would incorrectly conclude H_0 (the coin is fair, p = 0.5).
- Since H₁: p ≠ .5 includes many different values of p, the Type II error rate depends on the specific value of p.

Measuring Type II error Approximate Type II error using normal distribution

•
$$\mu = np = 100(.7) = 70$$

•
$$\sigma = \sqrt{np(1-p)} = \sqrt{100(.7)(.3)} = \sqrt{21}$$

•
$$\beta = P(\text{Accept } H_0 | H_1 \text{ true: } X \text{ binomial with } n = 100, p = .7)$$

 $\approx P(40.2 < X < 59.8 | X \text{ is normal with } \mu = 70, \sigma = \sqrt{21})$
 $= P\left(\frac{40.2-70}{\sqrt{21}} < \frac{X-70}{\sqrt{21}} < \frac{59.8-70}{\sqrt{21}}\right)$
 $= P(-6.50 < Z < -2.23)$
 $= \Phi(-2.23) - \Phi(-6.50)$
 $= .0129 - .0000 = .0129 = 1.29\%$
which is close to the correct value $\approx 1.25\%$ that we found by summing the binomial distribution.

 There are also rounding errors from using the table in the book instead of a calculator that computes Φ(z) more precisely.

Power curve

- The decision procedure is "Flip a coin 100 times, let *X* be the number of heads, and accept H_0 if 40.2 < X < 59.8".
- Plot the Type II error rate as a function of *p*:

$$\beta = \beta(p) = \sum_{k=41}^{59} {\binom{100}{k}} p^k (1-p)^{100-k}$$

Correct detection of H_1 :

Type II Error:

Choosing *n* to control Type I and II errors together

- Suppose we increase α from 0.05 to 0.10.
 - All samples with *P*-values between 0.05 and 0.10 are reclassified from Accept *H*₀ into Reject *H*₀.
 - Samples with any other *P*-values are classified the same as before.
 - Thus, increasing α increases the Type I error rate and decreases the Type II error rate. Decreasing α does the reverse.
- To keep both Type I & Type II errors down, we need to increase *n*.
- For a null hypothesis H_0 : p = 0.50, we want a test that is able to detect p = 0.51 at the $\alpha = 0.05$ significance level.

Choosing *n* to control Type I and II errors together Goal: Detect p = 0.51 when p = 0.50 is supposed to hold

• For n = 100, it's hard to distinguish p = 0.50 from 0.51, since the intervals supporting those are nearly the same, while for n = 1 million, there's no overlap (all for $\alpha = 0.05$):

	2-sided acceptance interval for			
p	n = 100	n = 1 million		
p = 0.50	$k=41,\cdots,59$	$k = 499020, \cdots, 500980$		
p = 0.51	$k=42,\cdots$, 60	$k = 509021, \cdots, 510979$		

- We'll see how to compute what n to use instead of just guessing a big number.
- Also, our goal is to detect an increase in p, so it's better to use a 1-sided test instead of a 2-sided test.

Choosing *n* to control Type I and II errors together Goal: Detect p = 0.51 when p = 0.50 is supposed to hold

General format of hypotheses for *p* in a binomial distribution

*H*₀: $p = p_0$

vs. one of these for H_1 :

 $H_1: p > p_0$ $H_1: p < p_0$ $H_1: p \neq p_0$

where p_0 is a specific value.

Our hypotheses

 $H_0: p = .5$ vs. $H_1: p > .5$

Choosing n to control Type I and II errors together

Hypotheses

$$H_0: p = .5$$
 vs. $H_1: p > .5$

Analysis of decision procedure

- Flip the coin *n* times, and let *x* be the number of heads.
- Under the null hypothesis, $p_0 = .5$ so

$$z = \frac{x - np_0}{\sqrt{np_0(1 - p_0)}} = \frac{x - .5n}{\sqrt{n(.5)(.5)}} = \frac{x - .5n}{\sqrt{n/2}}$$

• The *z*-score of x = .51n is $z = \frac{.51n - .5n}{\sqrt{n}/2} = .02\sqrt{n}$

• We reject H_0 when $z \ge z_{\alpha} = z_{0.05} = 1.64$, so

$$.02\sqrt{n} \ge 1.64$$
 $\sqrt{n} \ge \frac{1.64}{.02} = 82$ $n \ge 82^2 = 6724$

Choosing *n* to control Type I and II errors together

- Thus, if the test consists of n = 6724 flips, only $\approx 5\%$ of such tests on a fair coin would give $\geq 51\%$ heads.
- Increasing *n* further reduces the fraction α of tests giving $\geq 51\%$ heads with a fair coin.
- Instead of using the number of heads *x*, we could have used the proportion of heads $\hat{p} = \bar{x} = x/n$, which gives *z*-score

$$z = \frac{(x/n) - p_0}{\sqrt{p_0(1 - p_0)/n}} = \frac{(x/n) - .5}{1/(2\sqrt{n})} = \frac{x - .5n}{\sqrt{n/2}}$$

which is the same as before, so the rest works out the same.

Sec. 6.4. Errors in hypothesis testing

Terminology: Type I or II error

Alternate terminology: Null hypothesis H_0 ="negative" Alternative hypothesis H_1 ="positive"

	Irue state of nature			
Decision	H_0 true	H_1 true		
Acc. H_0 / Rej. H_1	True Negative (TN)	False Negative (FN)		
/ "negative"				
Rej. H_0 / Acc. H_1	False Positive (FP)	True Positive (TP)		
/ "positive"				

Measuring α and β from empirical data

Suppose you know the # times the tests fall in each category

	True state of nature				
Decision	H_0 true	H_1 true	Total		
Accept H_0 / Reject H_1	1	2	3		
Reject H_0 / Accept H_1	4	10	14		
Total	5	12	17		

Error rates

Type I error rate: $\alpha = P(\text{reject } H_0 | H_0 \text{ true}) = 4/5 = .8$ **Type II error rate:** $\beta = P(\text{accept } H_0 | H_0 \text{ false}) = 2/12 = 1/6$

Correct decision rates

Specificity: $1 - \alpha = P(\operatorname{accept} H_0 | H_0 \text{ true}) = 1/5 = .2$ **Sensitivity:** $1 - \beta = P(\operatorname{reject} H_0 | H_0 \text{ false}) = 10/12 = 5/6$ Power = sensitivity = 5/6

- Type I and II errors assume that one of them is right and analyze the probabilities of choosing the wrong one.
- The theoretical analysis assumes we know the correct probability distribution. It's best to check this, e.g., by making a histogram of tons of data.
- For coin flips, the binomial distribution is the right model.
- SATs and other exam scores are often assumed to follow a normal distribution, but it may not be true.

Mendel observed 7 traits in his pea plant experiments. He determined the genotype for tall/short as follows (and the other traits were done in an analagous way):

Mendel's Decision Procedure

- If a plant is short, its genotype is tt.
- If a plant is tall, do an experiment to determine if the genotype is Tt or TT: self-fertilize the plant, get 10 seeds, and plant them.
 - If any of the offspring are short, the original plant is declared to have genotype Tt (heterozygous).
 - If all offspring are tall, the original plant is declared to have genotype TT (homozygous).

- If this procedure gives tt or Tt, it's correct.
- However, classifications as TT might be erroneous!
- Assuming the genotypes of separate offspring are independent, if the original plant is heterozygous (Tt), the probability of it producing 10 tall offspring is

$$(.75)^{10} = .05631351$$

- Thus, about 5.6% of Tt plants will be incorrectly classified as TT.
- When tall plants are tested relative to the hypotheses $H_0:$ genotype is Tt vs. $H_1:$ genotype is TTthe Type I error rate is $\alpha \approx .056$ and the Type II error rate is $\beta = 0$.