6.1-6.4 Hypothesis tests

Prof. Tesler

Math 186
Winter 2019

6.1-6.2 Intro to hypothesis tests and decision rules

Hypothesis tests are a specific way of designing experiments to quantitatively study questions like these:

- Is a coin fair or biased? Is a die fair or biased?
- Does a gasoline additive improve mileage?
- Is a drug effective?
- Did Mendel fudge the data in his pea plant experiments?
- Sequence alignment (BLAST): are two DNA sequences similar by chance or is there evolutionary history to explain it?
- DNA/RNA microarrays:
- Which allele of a gene present in a sample?
- Does the expression level of a gene change in different cells?
- Does a medication influence the expression level?

Example - Criminal trial

- In a criminal trial, the jury considers two hypotheses: innocent or guilty.
- Sometimes the evidence is clear-cut and sometimes it's ambiguous.
- Burden of proof: If it's ambiguous, we assume innocent. Overwhelming evidence is needed to declare guilt.
- Mathematical language for this:

Hypotheses

- "Null hypothesis" H_{0} : Innocent
- "Alternative hypothesis" H_{1} : Guilty

The null hypothesis, H_{0}, is given the benefit of the doubt in ambiguous cases.

Example - Evaluating an SAT prep class

- Assume that SAT math scores are normally distributed with $\mu_{0}=500$ and $\sigma_{0}=100$.
- An SAT prep class claims it improves scores. Is it effective?
- If n people take the class, and after the class their average score is \bar{x}, what values of n and \bar{x} would be convincing proof?
- $\bar{x}=502$ and $n=10$

Not convincing. It's probably due to ordinary variability.

- $\overline{\boldsymbol{x}}=502$ and $n=1000000$

Convincing, although a 2 point improvement is not impressive.

- $\bar{x}=600$ and $n=1$

Not convincing. It's just one student, who might have had a high score anyway.

- $\bar{x}=600$ and $n=100$

Convincing.

- $\bar{x}=300$ and $n=100$

Oops, the class made them worse!

- We need to judge these values in a quantifiable, systematic way.

Example - Evaluating an SAT prep class

Definitions

- $\mu_{0}=500$ is the average score without the class.
- μ is the theoretical average score after the class (we don't know this value however).
- \bar{x} is the sample mean in our experiment (average score of our sample of students who took the class).
- If \bar{x} is high, it probably is because the class increases scores, so the theoretical mean (μ) increased, thus increasing the sample mean (\bar{x}). But it's possible that the class has no effect $\left(\mu=\mu_{0}\right)$ and we accidentally picked a sample with \bar{x} unusually high.
- We assume that the scores have a normal distribution with $\sigma=\sigma_{0}=100$ with or without the class, and only consider the possibility that the class changes the mean μ.
- Later, in Chapter 7, we'll also account for changes in σ.

Hypotheses

Goal: Decide between these two hypotheses

- "Null hypothesis": The class has no effect. (Any substantial deviation of \bar{x} from μ_{0} is natural, due to chance.)
$H_{0}: \mu=500 \quad$ (general format: $H_{0}: \mu=\mu_{0}$)
- "Alternative hypothesis": The class improves the score. (Deviation from μ_{0} is caused by the prep class.)
$H_{1}: \mu>500 \quad$ (general format: $H_{1}: \mu>\mu_{0}$)
- Burden of proof: Since it may be ambiguous, we assume H_{0} unless there is overwhelming evidence of H_{1}.
- It's possible that neither hypothesis is true (for example, the distribution isn't normal; the class actually lowers the score; etc.) but the basic procedure doesn't consider that possibility.

Example - Evaluating an SAT prep class

Decision procedure (first draft)

- Pick a class of $n=25$ people, and let \bar{x} be their average score after taking the class.
\bar{x} is the test statistic; the decision is based on \bar{x}.
- If $\bar{x} \geqslant 510$, then reject H_{0} (also called "reject the null hypothesis," "accept H_{1}," or "accept the alternative hypothesis").
- If $\bar{x}<510$ then accept H_{0} (or "insufficient evidence to reject H_{0} ")
- The critical region is the values of the test statistic leading to rejecting H_{0}; here, it's $\bar{x} \geqslant 510$.
- The cutoff of 510 was chosen arbitrarily for this first draft. We will see its impact and how to choose a better cutoff.

Assess the error rate of this procedure

- A Type I error is accepting H_{1} when H_{0} is true.
- A Type I/ error is accepting H_{0} when H_{1} is true.
- First, we will focus on controlling the Type I error rate, α :

$$
\alpha=P\left(\text { accept } H_{1} \mid H_{0} \text { true }\right)=P(\bar{X} \geqslant 510 \mid \mu=500)
$$

(Later, we will see how to control the Type II error rate.)

- Convert \bar{x} to z-score $z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}=\frac{\bar{x}-500}{100 / \sqrt{25}}$:

$$
\begin{aligned}
\alpha & =P\left(\frac{\bar{X}-500}{100 / \sqrt{25}} \geqslant \frac{510-500}{100 / \sqrt{25}}\right) \\
& =P(Z \geqslant .5) \\
& =1-\Phi(.5)=1-.6915=.3085
\end{aligned}
$$

Critical region

Critical region in terms of \bar{X}

Critical region in terms of Z

One-sided (right) Critical Region for $\mathrm{H}_{1} ; \alpha=0.3085$

- In each graph, the shaded area is $.3085=30.85 \%$.
- When $H_{0}(\mu=500)$ is true, about 30.85% of 25 person samples will have an average score $\geqslant 510$, and thus will be misclassified by this procedure.
- This test has an $\alpha=.3085$ significance level, which is very large.

How to choose the cutoff in the decision procedure

- Choose the significance level, α, first. Typically, $\alpha=0.05$ or 0.01 . Then compute the cutoff \bar{x} that achieves that significance level, so that if H_{0} is true, then at most a fraction α of cases will be misclassified as H_{1} (a Type I error).
- We'll still use $n=25$ people, but we want to find the cutoff for a significance level $\alpha=.05$.
- Solve $\Phi(z .05)=.95: \Phi(1.64)=.95$ so $z .05=1.64$.
(For two-sided 95\% confidence intervals, we used $z .025=1.96$.)
- Find the value \bar{x}^{*} with z-score 1.64.

It's called the critical value, and we reject H_{0} when $\bar{x} \geqslant \bar{x}^{*}$.

$$
\frac{\bar{x}^{*}-500}{100 / \sqrt{25}}=1.64
$$

SO

$$
\bar{x}^{*}=500+1.64 \cdot(100 / \sqrt{25})=532.8
$$

SAT prep class - Decision procedure (second draft)

Decision procedure for 5% significance level

- Pick a class of $n=25$ people, and let \bar{x} be their average score after taking the class.
- If $\bar{x} \geqslant 532.8$ then reject H_{0}.
- If $\bar{x}<532.8$ then accept H_{0}.
- The values of \bar{x} for which we reject H_{0} form the one-sided critical region: $[532.8, \infty)$.
- The values of \bar{x} for which we accept H_{0} form the one-sided acceptance region for μ under $H_{0}:(-\infty, 532.8)$.

SAT prep class - Decision procedure (second draft)

Reject H_{0} if \bar{x} in one-sided critical region $[532.8, \infty)$.

Area $=\alpha=.05$

Accept H_{0} if \bar{x} in one-sided 95\% acceptance region for H_{0} $(-\infty, 532.8)$.
Area $=1-\alpha=.95$
One-sided (right) Confidence Interval for $\mathrm{H}_{0} ; \mu=500, \sigma=20, \alpha=0.050$

Type II error rate

- We designed the experiment to achieve a Type I error rate 5%.
- What is the Type II error rate (β)? For example, what fraction of the time will this procedure fail to recognize that μ rose to 530 (since that's just below 532.8)? Compute

$$
\begin{aligned}
\beta & =P\left(\text { Accept } H_{0} \mid H_{1} \text { is true, with } \mu=530\right) \\
& =P(\bar{X}<532.8 \mid \mu=530)
\end{aligned}
$$

- When $\mu=530$, the z-score is not $\frac{\bar{x}-500}{100 / \sqrt{25}}$; it's $z^{\prime}=\frac{\bar{x}-530}{100 / \sqrt{25}}$. So

$$
\begin{aligned}
\beta & =P(\bar{X}<532.8 \mid \mu=530) \\
& =P\left(\frac{\bar{X}-530}{100 / \sqrt{25}}<\frac{532.8-530}{100 / \sqrt{25}}\right)=P\left(Z^{\prime}<.14\right)=.5557
\end{aligned}
$$

- β is more complicated to define than α, because β depends on the value of the unknown parameter ($\mu=530$ in this case), whereas for α the parameter value $(\mu=500)$ is specified in H_{0}.

Variation (a): One-sided to the right (what we did)

Hypotheses: $H_{0}: \mu=500$ vs. $H_{1}: \mu>500$.
Decision: Reject H_{0} if $z \geqslant z_{\alpha}$.
Equivalently, reject H_{0} if $\bar{x} \geqslant 500+z_{\alpha} \frac{\sigma}{\sqrt{n}}$.
Decision for $\alpha=0.05, \sigma=100, n=25$:
Reject H_{0} if $z \geqslant 1.64$.
Equivalently, reject H_{0} if $\bar{x} \geqslant 500+1.64\left(\frac{100}{\sqrt{25}}\right)=532.8$.
One-sided (right) Critical Region for H_{1}

Critical region:
Gives an area α on the right.

Variation (b): One-sided to the left

Hypotheses: $H_{0}: \mu=500$ vs. $H_{1}: \mu<500$.
Decision: Reject H_{0} if $z<-z_{\alpha}$.
Equivalently, reject H_{0} if $\bar{x} \leqslant 500-z_{\alpha} \frac{\sigma}{\sqrt{n}}$.
Decision for $\alpha=0.05, \sigma=100, n=25$:
Reject H_{0} if $z \leqslant-1.64$.
Equivalently, reject H_{0} if $\bar{x} \leqslant 500-1.64\left(\frac{100}{\sqrt{25}}\right)=467.2$.
One-sided (left) Critical Region for H_{1}

Critical region:
Gives an area α on the left.

Variation (c): Two-sided

Hypotheses: $H_{0}: \mu=500$ vs. $H_{1}: \mu \neq 500$.
Decision: Reject H_{0} if $|z| \geqslant z_{\alpha / 2}$.
Equivalently, reject H_{0} unless \bar{x} is between $500 \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}$.
Decision for $\alpha=0.05, \sigma=100, n=25$:
Reject H_{0} if $|z| \geqslant 1.96$. Equivalently,
reject H_{0} unless \bar{x} is between $500 \pm 1.96 \frac{100}{\sqrt{25}}=(460.8,539.2)$
Two-sided Critical Region for H_{1}

Critical region:
Gives an area α split up as $\alpha / 2$ on 흠 0.2 each side.

Variations - Summary

(a) For $H_{0}: \mu=500$ vs. $H_{1}: \mu>500$, the critical region is an area $\alpha=5 \%$ at the right.
(b) For $H_{0}: \mu=500$ vs. $H_{1}: \mu<500$, the critical region is an area $\alpha=5 \%$ at the left.
(c) For $H_{0}: \mu=500$ vs. $H_{1}: \mu \neq 500$, the critical region is split into area $\alpha / 2=2.5 \%$ at the right and $\alpha / 2=2.5 \%$ at the left.

- " 500 " and " 5% " can be replaced by other constant values.
- Important values of z_{α} (look up others in the table in the book):

$$
\alpha=.01 \quad \alpha=.05 \quad \alpha=.10
$$

One-sided

$$
z .01 \approx 2.33 \quad z .05 \approx 1.64 \quad z .10 \approx 1.28
$$

$$
\text { Two-sided } \quad z .005 \approx 2.58 \quad z .025 \approx 1.96 \quad z .05 \approx 1.64
$$

P-values

- Another way to do hypothesis tests. Makes the same conclusions.
- A Type I error is accepting H_{1} when H_{0} is really true.
- This happens because we got an unusually bad sample, where the test statistic accidentally falls in the critical region.
- Given a sample with a particular test statistic, its P-value is the probability to draw another sample with an even worse test statistic (meaning more supportive than the current sample of making the incorrect decision "Accept H_{1} " / "Reject H_{0} ").

P-values

Consider $H_{0}: \mu=500$ vs. $H_{1}: \mu>500 \quad$ with $\sigma=100$ and $n=25$

\square Supports H_{0} better

\square Supports H_{1} better

- Suppose our sample has $\bar{x}=510$.
- Samples supporting H_{1} / opposing H_{0} as much or more than this one are those with $\bar{x} \geqslant 510$.
- We showed $\bar{x} \geqslant 510$ for $\approx 30.85 \%$ of all samples when H_{0} is true:

$$
\begin{aligned}
P\left(\bar{X} \geqslant 510 \mid H_{0}\right) & =P\left(\frac{\bar{X}-500}{100 / \sqrt{25}} \geqslant \frac{510-500}{100 / \sqrt{25}}\right) \\
& =P(Z \geqslant .5)=1-\Phi(.5)=1-.6915=.3085
\end{aligned}
$$

- The P-value of $\bar{x}=510$ is $P=.3085=30.85 \%$.

P-values

Consider $H_{0}: \mu=500$ vs. $\quad H_{1}: \mu>500 \quad$ with $\sigma=100$ and $n=25$

- This means the probability under H_{0} of seeing a value "at least as extreme" as $\bar{x}=510$ is 30.85%.
- For other decision procedures, the definition of "at least this extreme" (more supportive of H_{1}, less supportive of H_{0}) depends on the hypotheses.
- The z-score of $\bar{x}=510$ under H_{0} is $z=\frac{510-500}{100 / \sqrt{25}}=\frac{10}{20}=.5$. H_{1} says what it means to be at least that extreme:
(a) $H_{0}: \mu=500$ vs. $H_{1}: \mu>500$.

$$
P=P(\bar{X} \geqslant 510)=P(Z \geqslant .5)=1-\Phi(.5)=1-.6915=.3085
$$

(b) $H_{0}: \mu=500$ vs. $H_{1}: \mu<500$.

$$
P=P(\bar{X} \leqslant 510)=P(Z \leqslant .5)=\Phi(.5)=.6915
$$

(c) $H_{0}: \mu=500$ vs. $H_{1}: \mu \neq 500$.

$$
\begin{aligned}
P & =P(\bar{X} \geqslant 510)+P(\bar{X} \leqslant 490) \\
& =P(|Z| \geqslant .5)=P(Z \geqslant .5)+P(Z \leqslant-.5)=.3085+.3085=.6170
\end{aligned}
$$

P-values for $\bar{x}=510(z=.5)$ for different H_{1} 's

$$
\text { (a) } \begin{aligned}
\boldsymbol{H}_{\mathbf{0}} & : \boldsymbol{\mu}=\mathbf{5 0 0} \\
\boldsymbol{H}_{\mathbf{1}} & : \boldsymbol{\mu}>\mathbf{5 0 0} \\
P & =P(Z \geqslant .5) \\
& =1-\Phi(.5) \\
& =1-.6915 \\
& =.3085
\end{aligned}
$$

(b) $H_{0}: \mu=500$
$H_{1}: \mu<500$

$$
\begin{aligned}
P & =P(Z \leqslant .5) \\
& =\Phi(.5) \\
& =.6915
\end{aligned}
$$

(c) $H_{0}: \mu=500$
$H_{1}: \mu \neq 500$

$$
\begin{aligned}
P & =P(|Z| \geqslant .5) \\
& =2 P(Z \geqslant .5) \\
& =2(.3085) \\
& =.6170
\end{aligned}
$$

\square Supports H_{0} better
\square Supports H_{1} better
\square Observed $\mathrm{z}=0.50$

P-values

- In terms of P-values, the decision procedure is "Reject H_{0} if $P \leqslant \alpha$."
- Interpretation: Suppose $P \leqslant \alpha$. If H_{0} holds, events at least this extreme are rare, occurring $\leqslant(100 \alpha) \%$ of the time. But if H_{1} holds, there's a much higher probability of test statistics in this range. Since we observed this event, H_{1} is more plausible.
(a) $P=0.3085$. When H_{0} holds, about 30.85% of samples have $\bar{X} \geqslant 510$.
(b) $P=0.6915$. When H_{0} holds, about 69.15% of samples have $\bar{X} \leqslant 510$.
(c) $P=0.6170$. When H_{0} holds, about 61.70% of samples have either $\bar{X} \geqslant 510$ or $\bar{X} \leqslant 490$.
- At the $\alpha=.05$ significance level, we accept H_{0} in all three cases since $P>.05$. Events this "extreme" are very common under H_{0}, so this does not provide convincing evidence against H_{0}.

P-values for $\bar{x}=536$

- Suppose $n=25$ and $\bar{x}=536$.
- Then $z=\frac{536-500}{100 / \sqrt{25}}=\frac{36}{20}=1.8$

$$
\text { (a) } H_{0}: \mu=500 \quad \text { vs. } \quad H_{1}: \mu>500
$$

- The P-value is $P=P(Z \geqslant 1.8)=1-\Phi(1.8)=1-.9641=.0359$.
- If H_{0} is true, only 3.59% of the time would we get a score this extreme or worse.
- At $\alpha=.05$, we reject H_{0}, since $P \leqslant \alpha$: . $0359 \leqslant .05$.
- At $\alpha=.01$, we accept H_{0} since $P>\alpha$: . $0359>.01$.

Another interpretation is we do not have sufficient evidence to reject H_{0} at significance level $\alpha=.01$.

P-values for $\bar{X}=536$

- Suppose $n=25$ and $\bar{X}=536$.
- Then $z=\frac{536-500}{100 / \sqrt{25}}=\frac{36}{20}=1.8$
(c) $H_{0}: \mu=500 \quad$ vs. $\quad H_{1}: \mu \neq 500$
- The P-value is $P=P(|Z| \geqslant 1.8)=2(.0359)=.0718$
- Accept H_{0} at both .01 and .05 significance levels since $.0718>.01$ and $.0718>.05$.

Advantages of P-values over critical values for hypothesis tests

- P-values give a continuous scale, so if you're near the arbitrary cutoff, you know it.
- P-values allow you to test against cutoffs for several α 's simultaneously. We could compute the critical values of \bar{x} for $\alpha=0.01,0.05$, etc., but this saves some steps.
- P-values can be defined for any statistical distribution, not just the normal distribution, so hypothesis tests for any distribution can be formulated as "Reject H_{0} if $P \leqslant \alpha$."
- You can pick up a scientific paper that uses any statistical distribution, even a distribution you don't yet know, and still understand the results if they are expressed using P-values. Otherwise, for each new test statistic, you have to learn the details of the test and how to interpret the test statistic.

Sec. 6.3. Hypothesis tests for the binomial distribution

Consider a coin with probability p of heads, $1-p$ of tails. Warning: do not confuse this with the P from P-values.
Two-sided hypothesis test: Is the coin fair?
Null hypothesis: $H_{0}: p=.5 \quad$ ("coin is fair") Alternative hypothesis: $H_{1}: p \neq .5$ ("coin is not fair")

Draft of decision procedure

- Flip a coin 100 times.
- Let X be the number of heads.
- If X is "close" to 50 then it's fair, and otherwise it's not fair. How do we quantify "close"?

Decision procedure - confidence interval

 How do we quantify "close"?Form a 95\% confidence interval for the expected \# of heads:

$$
\begin{aligned}
& n=100, p=0.5 \\
& \mu=n p=100(.5)=50 \\
& \sigma=\sqrt{n p(1-p)}=\sqrt{100(.5)(1-.5)}=\sqrt{25}=5
\end{aligned}
$$

Using the normal approximation, the 95% confidence interval is

$$
\begin{array}{rlc}
(\mu-1.96 \sigma, \mu+1.96 \sigma) & = & (50-1.96 \cdot 5,50+1.96 \cdot 5) \\
& = & (40.2,59.8)
\end{array}
$$

Check that it's OK to use the normal approximation

$$
\begin{aligned}
& \mu-3 \sigma=50-15=35>0 \\
& \mu+3 \sigma=50+15=65<100 \quad \text { so it is OK. }
\end{aligned}
$$

Decision procedure

Hypotheses

Null hypothesis: $\quad H_{0}: p=.5 \quad$ ("coin is fair") Alternative hypothesis: $H_{1}: p \neq .5$ ("coin is not fair")

Decision procedure

- Flip a coin 100 times.
- Let X be the number of heads.
- If $40.2<X<59.8$ then accept H_{0}; otherwise accept H_{1}.

Significance level: $\approx 5 \%$

If H_{0} is true (coin is fair), this procedure will give the wrong answer $\left(H_{1}\right)$ about 5% of the time.

Measuring Type I error (a.k.a. Significance Level)

H_{0} is the true state of nature, but we mistakenly reject H_{0} / accept H_{1}

- If this were truly the normal distribution, the Type I error would be $\alpha=.05=5 \%$ because we made a 95% confidence interval.
- However, the normal distribution is just an approximation; it's really the binomial distribution. So:

$$
\begin{aligned}
& \alpha=P\left(\text { accept } H_{1} \mid H_{0} \text { true }\right) \\
&=1-P\left(\text { accept } H_{0} \mid H_{0} \text { true }\right) \\
&=1-P(40.2<X<59.8 \mid \text { binomial with } p=.5) \\
&=1-.9431120664=0.0568879336 \approx 5.7 \% \\
& \begin{aligned}
P(40.2<X<59.8 \mid p=.5) & =\sum_{k=41}^{59}\binom{100}{k}(.5)^{k}(1-.5)^{100-k} \\
& =.9431120664
\end{aligned}
\end{aligned}
$$

- So it's a 94.3% confidence interval and the Type I error rate is $\alpha=5.7 \%$.

Measuring Type II error

H_{1} is the true state of nature but we mistakenly accept $H_{0} /$ reject H_{1}

- If $p=.7$, the test will probably detect it.
- If $p=.51$, the test will frequently conclude H_{0} is true when it shouldn't, giving a high Type II error rate.
- If this were a game in which you won $\$ 1$ for each heads and lost $\$ 1$ for tails, there would be an incentive to make a biased coin with p just above .5 (such as $p=.51$) so it would be hard to detect.

Measuring Type II error

Exact Type II error for $p=.7$ using binomial distribution

-

$$
\begin{aligned}
\beta & =P(\text { Type II error with } p=.7) \\
& =P\left(\text { Accept } H_{0} \mid X \text { is binomial, } p=.7\right) \\
& =P(40.2<X<59.8 \mid X \text { is binomial, } p=.7) \\
& =\sum_{k=41}^{59}\binom{100}{k}(.7)^{k}(.3)^{100-k}=.0124984 \approx 1.25 \% .
\end{aligned}
$$

- When $p=0.7$, the Type II error rate, β, is $\approx 1.25 \%$: $\approx 1.25 \%$ of decisions made with a biased coin (specifically biased at $p=0.7$) would incorrectly conclude H_{0} (the coin is fair, $p=0.5$).
- Since $H_{1}: p \neq .5$ includes many different values of p, the Type II error rate depends on the specific value of p.

Measuring Type II error

- $\mu=n p=100(.7)=70$
- $\sigma=\sqrt{n p(1-p)}=\sqrt{100(.7)(.3)}=\sqrt{21}$
- $\beta=P\left(\right.$ Accept $H_{0} \mid H_{1}$ true: X binomial with $\left.n=100, p=.7\right)$ $\approx P(40.2<X<59.8 \mid X$ is normal with $\mu=70, \sigma=\sqrt{21})$ $=P\left(\frac{40.2-70}{\sqrt{21}}<\frac{X-70}{\sqrt{21}}<\frac{59.8-70}{\sqrt{21}}\right)$ $=P(-6.50<Z<-2.23)$
$=\Phi(-2.23)-\Phi(-6.50)$
$=.0129-.0000=.0129=1.29 \%$
which is close to the correct value $\approx 1.25 \%$ that we found by summing the binomial distribution.
- There are also rounding errors from using the table in the book instead of a calculator that computes $\Phi(z)$ more precisely.

Power curve

- The decision procedure is "Flip a coin 100 times, let X be the number of heads, and accept H_{0} if $40.2<X<59.8$ ".
- Plot the Type II error rate as a function of p :

$$
\beta=\beta(p)=\sum_{k=41}^{59}\binom{100}{k} p^{k}(1-p)^{100-k}
$$

Type II Error:

$$
\beta=P\left(\text { Accept } H_{0} \mid H_{1} \text { true }\right)
$$

Operating Characteristic Curve

Correct detection of H_{1} : Power = Sensitivity = $1-\beta=P\left(\right.$ Accept $H_{1} \mid H_{1}$ true $)$

Power Curve

Choosing n to control Type I and II errors together

- Suppose we increase α from 0.05 to 0.10 .
- All samples with P-values between 0.05 and 0.10 are reclassified from Accept $\boldsymbol{H}_{\mathbf{0}}$ into Reject $\boldsymbol{H}_{\mathbf{0}}$.
- Samples with any other P-values are classified the same as before.
- Thus, increasing α increases the Type I error rate and decreases the Type II error rate. Decreasing α does the reverse.
- To keep both Type I \& Type II errors down, we need to increase n.
- For a null hypothesis $H_{0}: p=0.50$, we want a test that is able to detect $p=0.51$ at the $\alpha=0.05$ significance level.

Choosing n to control Type I and II errors together

Goal: Detect $p=0.51$ when $p=0.50$ is supposed to hold

- For $n=100$, it's hard to distinguish $p=0.50$ from 0.51 , since the intervals supporting those are nearly the same, while for $n=1$ million, there's no overlap (all for $\alpha=0.05$):

	2-sided acceptance interval for	
\boldsymbol{p}	$\boldsymbol{n = 1 0 0}$	$\boldsymbol{n = 1}$ million
$p=0.50$	$k=41, \cdots, 59$	$k=499020, \cdots, 500980$
$p=0.51$	$k=42, \cdots, 60$	$k=509021, \cdots, 510979$

- We'll see how to compute what n to use instead of just guessing a big number.
- Also, our goal is to detect an increase in p, so it's better to use a 1 -sided test instead of a 2-sided test.

Choosing n to control Type I and II errors together

Goal: Detect $p=0.51$ when $p=0.50$ is supposed to hold

General format of hypotheses for p in a binomial distribution

$$
H_{0}: p=p_{0}
$$

vs. one of these for H_{1} :

$$
\begin{aligned}
& H_{1}: p>p_{0} \\
& H_{1}: p<p_{0} \\
& H_{1}: p \neq p_{0}
\end{aligned}
$$

where p_{0} is a specific value.

Our hypotheses

$$
H_{0}: p=.5 \quad \text { vs. } \quad H_{1}: p>.5
$$

Choosing n to control Type I and II errors together

Hypotheses

$$
H_{0}: p=.5 \quad \text { vs. } \quad H_{1}: p>.5
$$

Analysis of decision procedure

- Flip the coin n times, and let x be the number of heads.
- Under the null hypothesis, $p_{0}=.5$ so

$$
z=\frac{x-n p_{0}}{\sqrt{n p_{0}\left(1-p_{0}\right)}}=\frac{x-.5 n}{\sqrt{n(.5)(.5)}}=\frac{x-.5 n}{\sqrt{n} / 2}
$$

- The z-score of $x=.51 n$ is $z=\frac{.51 n-.5 n}{\sqrt{n} / 2}=.02 \sqrt{n}$
- We reject H_{0} when $z \geqslant z_{\alpha}=z_{0.05}=1.64$, so

$$
.02 \sqrt{n} \geqslant 1.64 \quad \sqrt{n} \geqslant \frac{1.64}{.02}=82 \quad n \geqslant 82^{2}=6724
$$

Choosing n to control Type I and II errors together

- Thus, if the test consists of $n=6724$ flips, only $\approx 5 \%$ of such tests on a fair coin would give $\geqslant 51 \%$ heads.
- Increasing n further reduces the fraction α of tests giving $\geqslant 51 \%$ heads with a fair coin.
- Instead of using the number of heads x, we could have used the proportion of heads $\hat{p}=\bar{x}=x / n$, which gives z-score

$$
z=\frac{(x / n)-p_{0}}{\sqrt{p_{0}\left(1-p_{0}\right) / n}}=\frac{(x / n)-.5}{1 /(2 \sqrt{n})}=\frac{x-.5 n}{\sqrt{n} / 2}
$$

which is the same as before, so the rest works out the same.

Sec. 6.4. Errors in hypothesis testing

Terminology: Type I or II error

True state of nature

Decision	H_{0} true	
H_{1} true		
Accept $H_{0} /$ Reject H_{1}	Correct decision	Type II error
Reject $H_{0} /$ Accept H_{1}	Type I error	Correct decision

Alternate terminology:
Null hypothesis $H_{0}=$ "negative" Alternative hypothesis $H_{1}=$ "positive"

True state of nature
Decision $\quad H_{0}$ true $\quad H_{1}$ true
Acc. $H_{0} /$ Rej. H_{1} / "negative"
Rej. $H_{0} /$ Acc. H_{1}
True Negative (TN) \quad False Negative (FN)
False Positive (FP) \quad True Positive (TP) / "positive"

Measuring α and β from empirical data

Suppose you know the \# times the tests fall in each category
True state of nature

	Decision		H_{0} true		H_{1} true	Total
Accept $H_{0} /$ Reject H_{1}	1	2	3			
Reject $H_{0} /$ Accept H_{1}	4	10	14			
Total	5	12	17			

Error rates
Type I error rate: $\quad \alpha=P\left(\right.$ reject $H_{0} \mid H_{0}$ true $)=4 / 5=.8$
Type II error rate: $\quad \beta=P\left(\right.$ accept $H_{0} \mid H_{0}$ false $)=2 / 12=1 / 6$
Correct decision rates
Specificity: $\quad 1-\alpha=P\left(\right.$ accept $H_{0} \mid H_{0}$ true $)=1 / 5=.2$
Sensitivity: $\quad 1-\beta=P\left(\right.$ reject $H_{0} \mid H_{0}$ false $)=10 / 12=5 / 6$
Power $=$ sensitivity $=5 / 6$

Errors in hypothesis testing

- Type I and II errors assume that one of them is right and analyze the probabilities of choosing the wrong one.
- The theoretical analysis assumes we know the correct probability distribution. It's best to check this, e.g., by making a histogram of tons of data.
- For coin flips, the binomial distribution is the right model.
- SATs and other exam scores are often assumed to follow a normal distribution, but it may not be true.

Mendel's Pea Plant Experiments

Mendel observed 7 traits in his pea plant experiments. He determined the genotype for tall/short as follows (and the other traits were done in an analagous way):

Mendel's Decision Procedure

- If a plant is short, its genotype is tt .
- If a plant is tall, do an experiment to determine if the genotype is Tt or TT: self-fertilize the plant, get 10 seeds, and plant them.
- If any of the offspring are short, the original plant is declared to have genotype Tt (heterozygous).
- If all offspring are tall, the original plant is declared to have genotype TT (homozygous).

Mendel's Pea Plant Experiments

- If this procedure gives tt or Tt, it's correct.
- However, classifications as TT might be erroneous!
- Assuming the genotypes of separate offspring are independent, if the original plant is heterozygous (Tt), the probability of it producing 10 tall offspring is

$$
(.75)^{10}=.05631351
$$

- Thus, about 5.6% of Tt plants will be incorrectly classified as TT.
- When tall plants are tested relative to the hypotheses

$$
H_{0}: \text { genotype is } T t \quad \text { vs. } \quad H_{1}: \text { genotype is } T T
$$

the Type I error rate is $\alpha \approx .056$ and the Type II error rate is $\beta=0$.

