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6.1–6.2 Intro to hypothesis tests and decision rules

Hypothesis tests are a specific way of designing experiments to
quantitatively study questions like these:

Is a coin fair or biased? Is a die fair or biased?
Does a gasoline additive improve mileage?
Is a drug effective?
Did Mendel fudge the data in his pea plant experiments?
Sequence alignment (BLAST): are two DNA sequences similar by
chance or is there evolutionary history to explain it?
DNA/RNA microarrays:

Which allele of a gene present in a sample?
Does the expression level of a gene change in different cells?
Does a medication influence the expression level?
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Example — Criminal trial

In a criminal trial, the jury considers two hypotheses:
innocent or guilty.
Sometimes the evidence is clear-cut and sometimes it’s
ambiguous.
Burden of proof: If it’s ambiguous, we assume innocent.
Overwhelming evidence is needed to declare guilt.
Mathematical language for this:

Hypotheses
“Null hypothesis” H0: Innocent
“Alternative hypothesis” H1: Guilty

The null hypothesis, H0, is given the benefit of the doubt in
ambiguous cases.
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Example — Evaluating an SAT prep class
Assume that SAT math scores are normally distributed with
µ0 = 500 and σ0 = 100.
An SAT prep class claims it improves scores. Is it effective?
If n people take the class, and after the class their average score
is x̄, what values of n and x̄ would be convincing proof?

x̄ = 502 and n = 10
Not convincing. It’s probably due to ordinary variability.

x̄ = 502 and n = 1000000
Convincing, although a 2 point improvement is not impressive.

x̄ = 600 and n = 1
Not convincing. It’s just one student, who might have had a high

score anyway.
x̄ = 600 and n = 100

Convincing.
x̄ = 300 and n = 100

Oops, the class made them worse!
We need to judge these values in a quantifiable, systematic way.
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Example — Evaluating an SAT prep class

Definitions
µ0 = 500 is the average score without the class.
µ is the theoretical average score after the class
(we don’t know this value however).
x̄ is the sample mean in our experiment
(average score of our sample of students who took the class).

If x̄ is high, it probably is because the class increases scores, so
the theoretical mean (µ) increased, thus increasing the sample
mean (x̄). But it’s possible that the class has no effect (µ = µ0) and
we accidentally picked a sample with x̄ unusually high.

We assume that the scores have a normal distribution with
σ = σ0 = 100 with or without the class, and only consider the
possibility that the class changes the mean µ.

Later, in Chapter 7, we’ll also account for changes in σ.
Prof. Tesler 6.1–6.4 Hypothesis tests Math 186 / Winter 2019 5 / 43



Hypotheses

Goal: Decide between these two hypotheses
“Null hypothesis”: The class has no effect.
(Any substantial deviation of x̄ from µ0 is natural, due to chance.)

H0: µ = 500 (general format: H0: µ = µ0)

“Alternative hypothesis”: The class improves the score.
(Deviation from µ0 is caused by the prep class.)

H1: µ > 500 (general format: H1: µ > µ0)

Burden of proof: Since it may be ambiguous, we assume H0
unless there is overwhelming evidence of H1.
It’s possible that neither hypothesis is true (for example, the
distribution isn’t normal; the class actually lowers the score; etc.)
but the basic procedure doesn’t consider that possibility.
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Example — Evaluating an SAT prep class

Decision procedure (first draft)
Pick a class of n = 25 people, and let x̄ be their average score
after taking the class.
x̄ is the test statistic; the decision is based on x̄.

If x̄ > 510, then reject H0 (also called “reject the null hypothesis,”
“accept H1,” or “accept the alternative hypothesis”).
If x̄ < 510 then accept H0 (or “insufficient evidence to reject H0”)

The critical region is the values of the test statistic leading to
rejecting H0; here, it’s x̄ > 510.
The cutoff of 510 was chosen arbitrarily for this first draft.
We will see its impact and how to choose a better cutoff.
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Assess the error rate of this procedure

A Type I error is accepting H1 when H0 is true.

A Type II error is accepting H0 when H1 is true.

First, we will focus on controlling the Type I error rate, α:

α = P(accept H1|H0 true) = P(X > 510 |µ = 500)

(Later, we will see how to control the Type II error rate.)

Convert x̄ to z-score z =
x̄ − µ
σ/
√

n
=

x̄ − 500
100/

√
25

:

α = P
(

X − 500
100/

√
25

>
510 − 500
100/

√
25

)
= P(Z > .5)
= 1 −Φ(.5) = 1 − .6915 = .3085
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Critical region

Critical region in terms of X Critical region in terms of Z
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In each graph, the shaded area is .3085 = 30.85%.
When H0 (µ = 500) is true, about 30.85% of 25 person samples
will have an average score > 510, and thus will be misclassified by
this procedure.
This test has an α = .3085 significance level , which is very large.
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How to choose the cutoff in the decision procedure

Choose the significance level , α, first. Typically, α = 0.05 or 0.01.
Then compute the cutoff x̄ that achieves that significance level, so
that if H0 is true, then at most a fraction α of cases will be
misclassified as H1 (a Type I error ).

We’ll still use n = 25 people, but we want to find the cutoff for a
significance level α = .05.

Solve Φ(z.05) = .95: Φ(1.64) = .95 so z.05 = 1.64.
(For two-sided 95% confidence intervals, we used z.025 = 1.96.)

Find the value x̄∗ with z-score 1.64.
It’s called the critical value, and we reject H0 when x̄ > x̄∗.

x̄∗ − 500
100/

√
25

= 1.64

so
x̄∗ = 500 + 1.64 · (100/

√
25) = 532.8
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SAT prep class — Decision procedure (second draft)

Decision procedure for 5% significance level
Pick a class of n = 25 people, and let x̄ be their average score
after taking the class.
If x̄ > 532.8 then reject H0.
If x̄ < 532.8 then accept H0.

The values of x̄ for which we reject H0 form the one-sided critical
region: [532.8,∞).
The values of x̄ for which we accept H0 form the one-sided
acceptance region for µ under H0: (−∞, 532.8).
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SAT prep class — Decision procedure (second draft)

Reject H0 if x̄ in one-sided
critical region [532.8,∞).

Accept H0 if x̄ in one-sided
95% acceptance region for H0
(−∞, 532.8).

Area = α = .05 Area = 1 − α = .95
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Type II error rate

We designed the experiment to achieve a Type I error rate 5%.
What is the Type II error rate (β)? For example, what fraction of
the time will this procedure fail to recognize that µ rose to 530
(since that’s just below 532.8)? Compute

β = P(Accept H0 |H1 is true, with µ = 530)

= P(X < 532.8 |µ = 530)

When µ = 530, the z-score is not x̄−500
100/

√
25

; it’s z ′ = x̄−530
100/

√
25

. So

β = P(X < 532.8 |µ = 530)

= P
(

X − 530
100/

√
25
<

532.8 − 530
100/

√
25

)
= P(Z ′ < .14) = .5557

β is more complicated to define than α, because β depends on
the value of the unknown parameter (µ = 530 in this case),
whereas for α the parameter value (µ = 500) is specified in H0.
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Variation (a): One-sided to the right (what we did)

Hypotheses: H0: µ = 500 vs. H1: µ > 500.

Decision: Reject H0 if z > zα.
Equivalently, reject H0 if x̄ > 500 + zα σ√

n .

Decision for α = 0.05, σ = 100, n = 25:
Reject H0 if z > 1.64.
Equivalently, reject H0 if x̄ > 500 + 1.64( 100√

25
) = 532.8.

Critical region:
Gives an area α on the right.
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Variation (b): One-sided to the left

Hypotheses: H0: µ = 500 vs. H1: µ < 500.

Decision: Reject H0 if z < −zα.
Equivalently, reject H0 if x̄ 6 500 − zα σ√

n .

Decision for α = 0.05, σ = 100, n = 25:
Reject H0 if z 6 −1.64.
Equivalently, reject H0 if x̄ 6 500 − 1.64( 100√

25
) = 467.2.

Critical region:
Gives an area α on the left.
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Variation (c): Two-sided

Hypotheses: H0: µ = 500 vs. H1: µ , 500.

Decision: Reject H0 if |z| > zα/2.
Equivalently, reject H0 unless x̄ is between 500± zα/2

σ√
n .

Decision for α = 0.05, σ = 100, n = 25:
Reject H0 if |z| > 1.96. Equivalently,
reject H0 unless x̄ is between 500± 1.96 100√

25
= (460.8, 539.2)

Critical region:
Gives an area α split up as α/2 on
each side.
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Variations — Summary

(a) For H0: µ = 500 vs. H1: µ > 500,
the critical region is an area α = 5% at the right.

(b) For H0: µ = 500 vs. H1: µ < 500,
the critical region is an area α = 5% at the left.

(c) For H0: µ = 500 vs. H1: µ , 500,
the critical region is split into area α/2 = 2.5% at the right and
α/2 = 2.5% at the left.

“500” and “5%” can be replaced by other constant values.

Important values of zα (look up others in the table in the book):

α = .01 α = .05 α = .10
One-sided z.01 ≈ 2.33 z.05 ≈ 1.64 z.10 ≈ 1.28
Two-sided z.005 ≈ 2.58 z.025 ≈ 1.96 z.05 ≈ 1.64
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P-values

Another way to do hypothesis tests. Makes the same conclusions.

A Type I error is accepting H1 when H0 is really true.

This happens because we got an unusually bad sample, where
the test statistic accidentally falls in the critical region.

Given a sample with a particular test statistic, its P-value is the
probability to draw another sample with an even worse test
statistic (meaning more supportive than the current sample of
making the incorrect decision “Accept H1” / “Reject H0”).
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P-values
Consider H0: µ = 500 vs. H1: µ > 500 with σ = 100 and n = 25
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Suppose our sample has x̄ = 510.
Samples supporting H1 / opposing H0 as much or more than this
one are those with x̄ > 510.
We showed x̄ > 510 for ≈ 30.85% of all samples when H0 is true:

P(X > 510|H0) = P
(

X−500
100/

√
25

> 510−500
100/

√
25

)
= P(Z > .5) = 1 −Φ(.5) = 1 − .6915 = .3085

The P-value of x̄ = 510 is P = .3085 = 30.85%.
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P-values
Consider H0: µ = 500 vs. H1: µ > 500 with σ = 100 and n = 25

This means the probability under H0 of seeing a value “at least as
extreme” as x̄ = 510 is 30.85%.

For other decision procedures, the definition of “at least this
extreme” (more supportive of H1, less supportive of H0) depends
on the hypotheses.

The z-score of x̄ = 510 under H0 is z = 510−500
100/

√
25

= 10
20 = .5.

H1 says what it means to be at least that extreme:

(a) H0: µ = 500 vs. H1: µ > 500.
P = P(X > 510) = P(Z > .5) = 1 −Φ(.5) = 1 − .6915 = .3085

(b) H0: µ = 500 vs. H1: µ < 500.
P = P(X 6 510) = P(Z 6 .5) = Φ(.5) = .6915

(c) H0: µ = 500 vs. H1: µ , 500.
P = P(X > 510) + P(X 6 490)
=P(|Z|> .5)=P(Z> .5)+P(Z6−.5)= .3085+.3085= .6170
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P-values for x̄ = 510 (z = .5) for different H1’s
(a) H0: µ = 500

H1: µ > 500

P = P(Z > .5)
= 1 −Φ(.5)
= 1 − .6915

= .3085
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(b) H0: µ = 500
H1: µ < 500

P = P(Z 6 .5)
= Φ(.5)
= .6915
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(c) H0: µ = 500
H1: µ , 500

P = P(|Z| > .5)
= 2P(Z > .5)
= 2(.3085)

= .6170
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P-values

In terms of P-values, the decision procedure is
“Reject H0 if P 6 α.”

Interpretation: Suppose P 6 α. If H0 holds, events at least this
extreme are rare, occurring 6 (100α)% of the time. But if H1 holds,
there’s a much higher probability of test statistics in this range.
Since we observed this event, H1 is more plausible.

(a) P=0.3085. When H0 holds, about 30.85% of samples have X>510.

(b) P=0.6915. When H0 holds, about 69.15% of samples have X6510.

(c) P=0.6170. When H0 holds, about 61.70% of samples have either
X>510 or X6490.

At the α = .05 significance level, we accept H0 in all three cases
since P > .05. Events this “extreme” are very common under H0,
so this does not provide convincing evidence against H0.
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P-values for x̄ = 536

Suppose n = 25 and x̄ = 536.
Then z = 536−500

100/
√

25
= 36

20 = 1.8

(a) H0: µ = 500 vs. H1: µ > 500
The P-value is P = P(Z > 1.8) = 1 −Φ(1.8) = 1 − .9641 = .0359.
If H0 is true, only 3.59% of the time would we get a score this
extreme or worse.
At α = .05, we reject H0, since P 6 α: .0359 6 .05.
At α = .01, we accept H0 since P > α: .0359 > .01.
Another interpretation is we do not have sufficient evidence to
reject H0 at significance level α = .01.
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P-values for X = 536

Suppose n = 25 and X = 536.
Then z = 536−500

100/
√

25
= 36

20 = 1.8

(c) H0: µ = 500 vs. H1: µ , 500
The P-value is P = P(|Z| > 1.8) = 2(.0359) = .0718

Accept H0 at both .01 and .05 significance levels since .0718 > .01
and .0718 > .05.
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Advantages of P-values over critical values for hypothesis tests

P-values give a continuous scale, so if you’re near the arbitrary
cutoff, you know it.

P-values allow you to test against cutoffs for several α’s
simultaneously. We could compute the critical values of x̄ for
α = 0.01, 0.05, etc., but this saves some steps.

P-values can be defined for any statistical distribution, not just the
normal distribution, so hypothesis tests for any distribution can be
formulated as “Reject H0 if P 6 α.”

You can pick up a scientific paper that uses any statistical
distribution, even a distribution you don’t yet know, and still
understand the results if they are expressed using P-values.
Otherwise, for each new test statistic, you have to learn the details
of the test and how to interpret the test statistic.
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Sec. 6.3. Hypothesis tests for the binomial distribution

Consider a coin with probability p of heads, 1 − p of tails.
Warning: do not confuse this with the P from P-values.

Two-sided hypothesis test: Is the coin fair?
Null hypothesis: H0: p = .5 (“coin is fair”)

Alternative hypothesis: H1: p , .5 (“coin is not fair”)

Draft of decision procedure
Flip a coin 100 times.
Let X be the number of heads.
If X is “close” to 50 then it’s fair, and otherwise it’s not fair.

How do we quantify “close”?
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Decision procedure — confidence interval
How do we quantify “close”?

Form a 95% confidence interval for the expected # of heads:

n = 100, p = 0.5
µ = np = 100(.5) = 50

σ =
√

np(1 − p) =
√

100(.5)(1 − .5) =
√

25 = 5

Using the normal approximation, the 95% confidence interval is

(µ− 1.96σ,µ+ 1.96σ) = (50 − 1.96 · 5 , 50 + 1.96 · 5)
= (40.2 , 59.8)

Check that it’s OK to use the normal approximation

µ− 3σ = 50 − 15 = 35 > 0
µ+ 3σ = 50 + 15 = 65 < 100 so it is OK.
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Decision procedure

Hypotheses
Null hypothesis: H0: p = .5 (“coin is fair”)

Alternative hypothesis: H1: p , .5 (“coin is not fair”)

Decision procedure
Flip a coin 100 times.
Let X be the number of heads.
If 40.2 < X < 59.8 then accept H0; otherwise accept H1.

Significance level: ≈ 5%
If H0 is true (coin is fair), this procedure will give the wrong answer (H1)
about 5% of the time.
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Measuring Type I error (a.k.a. Significance Level)
H0 is the true state of nature, but we mistakenly reject H0 / accept H1

If this were truly the normal distribution, the Type I error would be
α = .05 = 5% because we made a 95% confidence interval.
However, the normal distribution is just an approximation; it’s
really the binomial distribution. So:

α = P(accept H1|H0 true)
= 1 − P(accept H0|H0 true)
= 1 − P(40.2 < X < 59.8 |binomial with p = .5)
= 1 − .9431120664 = 0.0568879336 ≈ 5.7%

P(40.2 < X < 59.8 | p = .5) =

59∑
k=41

(
100

k

)
(.5)k(1 − .5)100−k

= .9431120664

So it’s a 94.3% confidence interval and the Type I error rate is
α = 5.7%.
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Measuring Type II error
H1 is the true state of nature but we mistakenly accept H0 / reject H1

If p = .7, the test will probably detect it.

If p = .51, the test will frequently conclude H0 is true when it
shouldn’t, giving a high Type II error rate.

If this were a game in which you won $1 for each heads and lost
$1 for tails, there would be an incentive to make a biased coin with
p just above .5 (such as p = .51) so it would be hard to detect.
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Measuring Type II error
Exact Type II error for p = .7 using binomial distribution

β = P(Type II error with p = .7)
= P(Accept H0 |X is binomial, p = .7)
= P(40.2 < X < 59.8 |X is binomial, p = .7)

=

59∑
k=41

(
100

k

)
(.7)k(.3)100−k = .0124984 ≈ 1.25%.

When p = 0.7, the Type II error rate, β, is ≈ 1.25%:
≈ 1.25% of decisions made with a biased coin (specifically biased
at p = 0.7) would incorrectly conclude H0 (the coin is fair, p = 0.5).

Since H1: p , .5 includes many different values of p, the Type II
error rate depends on the specific value of p.
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Measuring Type II error
Approximate Type II error using normal distribution

µ = np = 100(.7) = 70

σ =
√

np(1 − p) =
√

100(.7)(.3) =
√

21

β = P(Accept H0 |H1 true: X binomial with n = 100, p = .7)
≈ P(40.2 < X < 59.8 |X is normal with µ = 70, σ =

√
21)

= P
(

40.2−70√
21

< X−70√
21
< 59.8−70√

21

)
= P(−6.50 < Z < −2.23)
= Φ(−2.23) −Φ(−6.50)
= .0129 − .0000 = .0129 = 1.29%

which is close to the correct value ≈ 1.25% that we found by
summing the binomial distribution.

There are also rounding errors from using the table in the book
instead of a calculator that computes Φ(z) more precisely.
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Power curve

The decision procedure is “Flip a coin 100 times, let X be the
number of heads, and accept H0 if 40.2 < X < 59.8”.
Plot the Type II error rate as a function of p:

β = β(p) =
59∑

k=41

(
100

k

)
pk(1 − p)100−k

Type II Error: Correct detection of H1:
Power = Sensitivity =

β = P(Accept H0 |H1 true) 1 − β = P(Accept H1 |H1 true)
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Choosing n to control Type I and II errors together

Suppose we increase α from 0.05 to 0.10.
All samples with P-values between 0.05 and 0.10 are reclassified
from Accept H0 into Reject H0.

Samples with any other P-values are classified the same as before.

Thus, increasing α increases the Type I error rate and decreases
the Type II error rate. Decreasing α does the reverse.

To keep both Type I & Type II errors down, we need to increase n.

For a null hypothesis H0: p = 0.50, we want a test that is able to
detect p = 0.51 at the α = 0.05 significance level.
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Choosing n to control Type I and II errors together
Goal: Detect p = 0.51 when p = 0.50 is supposed to hold

For n = 100, it’s hard to distinguish p = 0.50 from 0.51, since the
intervals supporting those are nearly the same, while for n = 1
million, there’s no overlap (all for α = 0.05):

2-sided acceptance interval for
p n = 100 n = 1 million

p = 0.50 k = 41, · · · , 59 k = 499020, · · · , 500980
p = 0.51 k = 42, · · · , 60 k = 509021, · · · , 510979

We’ll see how to compute what n to use instead of just guessing a
big number.

Also, our goal is to detect an increase in p, so it’s better to use a
1-sided test instead of a 2-sided test.
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Choosing n to control Type I and II errors together
Goal: Detect p = 0.51 when p = 0.50 is supposed to hold

General format of hypotheses for p in a binomial distribution
H0: p = p0

vs. one of these for H1:
H1: p > p0
H1: p < p0
H1: p , p0

where p0 is a specific value.

Our hypotheses
H0: p = .5 vs. H1: p > .5
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Choosing n to control Type I and II errors together

Hypotheses
H0: p = .5 vs. H1: p > .5

Analysis of decision procedure
Flip the coin n times, and let x be the number of heads.
Under the null hypothesis, p0 = .5 so

z =
x − np0√

np0(1 − p0)
=

x − .5n√
n(.5)(.5)

=
x − .5n√

n/2

The z-score of x = .51n is z =
.51n − .5n√

n/2
= .02

√
n

We reject H0 when z > zα = z0.05 = 1.64, so

.02
√

n > 1.64
√

n >
1.64
.02

= 82 n > 822 = 6724
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Choosing n to control Type I and II errors together

Thus, if the test consists of n = 6724 flips, only ≈ 5% of such tests
on a fair coin would give > 51% heads.

Increasing n further reduces the fraction α of tests giving > 51%
heads with a fair coin.

Instead of using the number of heads x, we could have used the
proportion of heads p̂ = x̄ = x/n, which gives z-score

z =
(x/n) − p0√
p0(1 − p0)/n

=
(x/n) − .5
1/(2

√
n)

=
x − .5n√

n/2

which is the same as before, so the rest works out the same.
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Sec. 6.4. Errors in hypothesis testing

Terminology: Type I or II error

True state of nature
Decision H0 true H1 true

Accept H0 / Reject H1 Correct decision Type II error
Reject H0 / Accept H1 Type I error Correct decision

Alternate terminology:
Null hypothesis H0=“negative”

Alternative hypothesis H1=“positive”
True state of nature

Decision H0 true H1 true
Acc. H0 / Rej. H1 True Negative (TN) False Negative (FN)

/ “negative”
Rej. H0 / Acc. H1 False Positive (FP) True Positive (TP)

/ “positive”
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Measuring α and β from empirical data

Suppose you know the # times the tests fall in each category

True state of nature
Decision H0 true H1 true Total

Accept H0 / Reject H1 1 2 3
Reject H0 / Accept H1 4 10 14

Total 5 12 17

Error rates
Type I error rate: α = P(reject H0|H0 true) = 4/5 = .8
Type II error rate: β = P(accept H0|H0 false) = 2/12 = 1/6

Correct decision rates
Specificity: 1 − α = P(accept H0|H0 true) = 1/5 = .2
Sensitivity: 1 − β = P(reject H0|H0 false) = 10/12 = 5/6

Power = sensitivity = 5/6
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Errors in hypothesis testing

Type I and II errors assume that one of them is right and analyze
the probabilities of choosing the wrong one.

The theoretical analysis assumes we know the correct probability
distribution. It’s best to check this, e.g., by making a histogram of
tons of data.

For coin flips, the binomial distribution is the right model.

SATs and other exam scores are often assumed to follow a
normal distribution, but it may not be true.
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Mendel’s Pea Plant Experiments

Mendel observed 7 traits in his pea plant experiments. He determined
the genotype for tall/short as follows (and the other traits were done in
an analagous way):

Mendel’s Decision Procedure
If a plant is short, its genotype is tt.
If a plant is tall, do an experiment to determine if the genotype is
Tt or TT: self-fertilize the plant, get 10 seeds, and plant them.

If any of the offspring are short, the original plant is declared to
have genotype Tt (heterozygous).
If all offspring are tall, the original plant is declared to have
genotype TT (homozygous).
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Mendel’s Pea Plant Experiments

If this procedure gives tt or Tt, it’s correct.
However, classifications as TT might be erroneous!
Assuming the genotypes of separate offspring are independent, if
the original plant is heterozygous (Tt), the probability of it
producing 10 tall offspring is

(.75)10 = .05631351

Thus, about 5.6% of Tt plants will be incorrectly classified as TT.
When tall plants are tested relative to the hypotheses

H0: genotype is Tt vs. H1: genotype is TT
the Type I error rate is α ≈ .056 and the Type II error rate is β = 0.
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