Consider the SAT math scores again. Secretly, the mean is 500 and the standard deviation is 100.

Chapter 5: We assumed $\sigma = 100$ was known. We estimated μ from data as a confidence interval centered on the sample mean.

Chapter 6: We did hypothesis tests about μ under the same circumstances.

Chapter 7: Both μ and σ are unknown. We estimate both of them from data, either for confidence intervals or hypothesis tests.

Data

<table>
<thead>
<tr>
<th>Exp. #</th>
<th>Values x_1, \ldots, x_6</th>
<th>Sample mean m</th>
<th>Sample Var. s^2</th>
<th>Sample SD s</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>650, 510, 470, 570, 410, 370</td>
<td>496.67</td>
<td>10666.67</td>
<td>103.28</td>
</tr>
<tr>
<td>#2</td>
<td>510, 420, 520, 360, 470, 530</td>
<td>468.33</td>
<td>4456.67</td>
<td>66.76</td>
</tr>
<tr>
<td>#3</td>
<td>470, 380, 480, 320, 430, 490</td>
<td>428.33</td>
<td>4456.67</td>
<td>66.76</td>
</tr>
</tbody>
</table>
Number of standard deviations m is away from μ when $\mu = 500$ and $\sigma = 100$, for sample mean of $n = 6$ points

Number of standard deviations if σ is known:

The z-score of m is

$$z = \frac{m - \mu}{\sigma / \sqrt{n}} = \frac{m - 500}{100 / \sqrt{6}}$$

Estimating number of standard deviations if σ is unknown:

The t-score of m is

$$t = \frac{m - \mu}{s / \sqrt{n}} = \frac{m - 500}{s / \sqrt{6}}$$

- It uses sample standard deviation s in place of σ.
- Note that s is computed from the same data as m.
- t has the same degrees of freedom as s; here, $df = n - 1 = 5$.
- The random variable is called T_5 (T distribution with 5 degrees of freedom).
Number of standard deviations m is away from μ

Data

<table>
<thead>
<tr>
<th>Exp. #</th>
<th>Values x_1, \ldots, x_6</th>
<th>Sample mean m</th>
<th>Sample Var. s^2</th>
<th>Sample SD s</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>650, 510, 470, 570, 410, 370</td>
<td>496.67</td>
<td>10666.67</td>
<td>103.28</td>
</tr>
<tr>
<td>#2</td>
<td>510, 420, 520, 360, 470, 530</td>
<td>468.33</td>
<td>4456.67</td>
<td>66.76</td>
</tr>
<tr>
<td>#3</td>
<td>470, 380, 480, 320, 430, 490</td>
<td>428.33</td>
<td>4456.67</td>
<td>66.76</td>
</tr>
</tbody>
</table>

#1: $z = \frac{496.67 - 500}{100/\sqrt{6}} \approx -0.082$

$\quad t = \frac{496.67 - 500}{103.28/\sqrt{6}} \approx -0.079$

Close

#2: $z = \frac{468.33 - 500}{100/\sqrt{6}} \approx -0.776$

$\quad t = \frac{468.33 - 500}{66.76/\sqrt{6}} \approx -1.162$

Far

#3: $z = \frac{428.33 - 500}{100/\sqrt{6}} \approx -1.756$

$\quad t = \frac{428.33 - 500}{66.76/\sqrt{6}} \approx -2.630$

Far
In $z = \frac{m - \mu}{\sigma/\sqrt{n}}$, the numerator depends on x_1, \ldots, x_n while the denominator is constant.

But in $t = \frac{m - \mu}{s/\sqrt{n}}$, both the numerator and denominator are functions of x_1, \ldots, x_n (since m and s are functions of them).

The pdf of t is no longer the standard normal distribution, but instead is a new distribution, T_{n-1}, the t-distribution with $n - 1$ degrees of freedom. ($d.f. = n - 1$)

The pdf is still symmetric and “bell-shaped,” but not the same “bell” as the normal distribution.

Degrees of freedom $d.f. = n - 1$ match here and in the s^2 formula.

As $d.f.$ rises, the curves get closer to the standard normal curve; the curves are really close for $d.f. \geq 30$.

This was developed in 1908 by William Gosset under the pseudonym “Student.” He worked at Guinness Brewery with small sample sizes, such as $n = 3$.

Prof. Tesler

Ch. 7: One sample hypoth. tests for μ, σ

Math 186 / Winter 2016
The curves from bottom to top (at $t = 0$) are for $d.f. = 1, 2, 10, 30$. The top one is the standard normal curve.
For the \(t \)-distribution with \(df \) degrees of freedom (random variable \(T_{df} \)), define \(t_{\alpha, df} \) so that

\[
P(T_{df} \geq t_{\alpha, df}) = \alpha.
\]

This is analogous to the standard normal distribution, where \(z_{\alpha} \) was defined so the area right of \(z_{\alpha} \) is \(\alpha \):

\[
P(Z \geq z_{\alpha}) = \alpha.
\]
Part of t-table in back of book (Larsen & Marx, p. 699)

Look up $t_{0.025,5} = 2.5706$

TABLE A.2: Upper Percentiles of Student t Distributions

<table>
<thead>
<tr>
<th>df</th>
<th>0.20</th>
<th>0.15</th>
<th>0.10</th>
<th>0.05</th>
<th>0.025</th>
<th>0.01</th>
<th>0.005</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.376</td>
<td>1.963</td>
<td>3.078</td>
<td>6.3138</td>
<td>12.706</td>
<td>31.821</td>
<td>63.657</td>
</tr>
<tr>
<td>2</td>
<td>1.061</td>
<td>1.386</td>
<td>1.886</td>
<td>2.9200</td>
<td>4.3027</td>
<td>6.965</td>
<td>9.9248</td>
</tr>
<tr>
<td>3</td>
<td>0.978</td>
<td>1.250</td>
<td>1.638</td>
<td>2.3534</td>
<td>3.1825</td>
<td>4.541</td>
<td>5.8409</td>
</tr>
<tr>
<td>4</td>
<td>0.941</td>
<td>1.190</td>
<td>1.533</td>
<td>2.1318</td>
<td>2.7764</td>
<td>3.747</td>
<td>4.6041</td>
</tr>
<tr>
<td>5</td>
<td>0.920</td>
<td>1.156</td>
<td>1.476</td>
<td>2.0150</td>
<td>2.5706</td>
<td>3.365</td>
<td>4.0321</td>
</tr>
<tr>
<td>6</td>
<td>0.906</td>
<td>1.134</td>
<td>1.440</td>
<td>1.9432</td>
<td>2.4469</td>
<td>3.143</td>
<td>3.7074</td>
</tr>
<tr>
<td>7</td>
<td>0.896</td>
<td>1.119</td>
<td>1.415</td>
<td>1.8946</td>
<td>2.3646</td>
<td>2.998</td>
<td>3.4995</td>
</tr>
<tr>
<td>8</td>
<td>0.889</td>
<td>1.108</td>
<td>1.397</td>
<td>1.8595</td>
<td>2.3060</td>
<td>2.896</td>
<td>3.3554</td>
</tr>
<tr>
<td>9</td>
<td>0.883</td>
<td>1.100</td>
<td>1.383</td>
<td>1.8331</td>
<td>2.2622</td>
<td>2.821</td>
<td>3.2498</td>
</tr>
</tbody>
</table>
Confidence intervals for estimating μ from m

- In Chapter 5, we made 95% confidence intervals for μ from m assuming we knew σ (and it works for any n):

$$\left(m - 1.96 \frac{\sigma}{\sqrt{n}}, m + 1.96 \frac{\sigma}{\sqrt{n}} \right)$$

- We now replace σ by the estimate s from the data. 1.96 is replaced by a cutoff for t for $6 - 1 = 5$ degrees of freedom.

To put 95% of the area in the center, 2.5% on the left, and 2.5% on the right, look up $t_{0.025,5} = 2.5706$ in the table in the book.

$$\left(m - \frac{2.5706 s}{\sqrt{6}}, m + \frac{2.5706 s}{\sqrt{6}} \right)$$

- Note that the cutoff 2.5706 depended on $df = n - 1 = 5$ and would change for other n’s; also, we still divide by $\sqrt{n} = \sqrt{6}$.
Confidence intervals for estimating μ from m

Formulas for 2-sided $100(1 - \alpha)$% confidence interval for μ

When σ is known, use normal distribution

$$
\left(m - \frac{z_{\alpha/2} \cdot \sigma}{\sqrt{n}}, m + \frac{z_{\alpha/2} \cdot \sigma}{\sqrt{n}} \right)
$$

95% confidence interval ($\alpha = 0.05$) with $\sigma = 100$,
$z_{0.05} = 1.96$:

$$
\left(m - \frac{1.96(100)}{\sqrt{n}}, m + \frac{1.96(100)}{\sqrt{n}} \right)
$$

When σ is not known, and m, s estimated from same n points

$$
\left(m - \frac{t_{\alpha/2,n-1} \cdot s}{\sqrt{n}}, m + \frac{t_{\alpha/2,n-1} \cdot s}{\sqrt{n}} \right)
$$

A 95% confidence interval ($\alpha = .05$) when $n = 6$;
$t_{0.05,5} = 2.5706$

$$
\left(m - \frac{2.5706 s}{\sqrt{6}}, m + \frac{2.5706 s}{\sqrt{6}} \right)
$$

- The cutoff $z = 1.96$ doesn’t depend on n, but $t = 2.5706$ does ($df = n - 1 = 5$) and would change for other values of n.
- In both versions, we divide by $\sqrt{n} = 6$.
95% confidence intervals for \(\mu \)

<table>
<thead>
<tr>
<th>Exp. #</th>
<th>Data (x_1, \ldots, x_6)</th>
<th>(m)</th>
<th>(s^2)</th>
<th>(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>650, 510, 470, 570, 410, 370</td>
<td>496.67</td>
<td>10666.67</td>
<td>103.28</td>
</tr>
<tr>
<td>#2</td>
<td>510, 420, 520, 360, 470, 530</td>
<td>468.33</td>
<td>4456.67</td>
<td>66.76</td>
</tr>
<tr>
<td>#3</td>
<td>470, 380, 480, 320, 430, 490</td>
<td>428.33</td>
<td>4456.67</td>
<td>66.76</td>
</tr>
</tbody>
</table>

When \(\sigma \) known (say \(\sigma = 100 \)), use normal distribution

\#1: \((496.67 - \frac{1.96(100)}{\sqrt{6}}, 496.67 + \frac{1.96(100)}{\sqrt{6}}) = (416.65, 576.69) \)

\#2: \((468.33 - \frac{1.96(100)}{\sqrt{6}}, 468.33 + \frac{1.96(100)}{\sqrt{6}}) = (388.31, 548.35) \)

\#3: \((428.33 - \frac{1.96(100)}{\sqrt{6}}, 428.33 + \frac{1.96(100)}{\sqrt{6}}) = (348.31, 508.35) \)

When \(\sigma \) not known, estimate \(\sigma \) by \(s \) and use \(t \)-distribution

\#1: \((496.67 - \frac{2.5706(103.28)}{\sqrt{6}}, 496.67 + \frac{2.5706(103.28)}{\sqrt{6}}) = (388.28, 605.06) \)

\#2: \((468.33 - \frac{2.5706(66.76)}{\sqrt{6}}, 468.33 + \frac{2.5706(66.76)}{\sqrt{6}}) = (398.27, 538.39) \)

\#3: \((428.33 - \frac{2.5706(66.76)}{\sqrt{6}}, 428.33 + \frac{2.5706(66.76)}{\sqrt{6}}) = (358.27, 498.39) \) (missing 500)
Hypothesis tests for μ

Test $H_0: \mu = 500$ vs. $H_1: \mu \neq 500$ at significance level $\alpha = .05$

<table>
<thead>
<tr>
<th>Exp. #</th>
<th>Data x_1, \ldots, x_6</th>
<th>m</th>
<th>s^2</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>650, 510, 470, 570, 410, 370</td>
<td>496.67</td>
<td>10666.67</td>
<td>103.28</td>
</tr>
<tr>
<td>#2</td>
<td>510, 420, 520, 360, 470, 530</td>
<td>468.33</td>
<td>4456.67</td>
<td>66.76</td>
</tr>
<tr>
<td>#3</td>
<td>470, 380, 480, 320, 430, 490</td>
<td>428.33</td>
<td>4456.67</td>
<td>66.76</td>
</tr>
</tbody>
</table>

When σ is known (say $\sigma = 100$)

Reject H_0 when $|z| \geq z_{\alpha/2} = z_{.025} = 1.96$.

- #1: $z = -.082$, $|z| < 1.96$ so accept H_0.
- #2: $z = -.776$, $|z| < 1.96$ so accept H_0.
- #3: $z = -1.756$, $|z| < 1.96$ so accept H_0.

When σ is not known, but is estimated by s

Reject H_0 when $|t| \geq t_{\alpha/2, n-1} = t_{.025,5} = 2.5706$.

- #1: $t = -.079$, $|t| < 2.5706$ so accept H_0.
- #2: $t = -1.162$, $|t| < 2.5706$ so accept H_0.
- #3: $t = -2.630$, $|t| \geq 2.5706$ so reject H_0.
Use to compute approx. 2-sided P-values for $t = -0.079, -1.162, -2.630$, $d.f. = 5$

TABLE A.2: Upper Percentiles of Student t Distributions

<table>
<thead>
<tr>
<th>df</th>
<th>0.20</th>
<th>0.15</th>
<th>0.10</th>
<th>0.05</th>
<th>0.025</th>
<th>0.01</th>
<th>0.005</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.376</td>
<td>1.963</td>
<td>3.078</td>
<td>6.3138</td>
<td>12.706</td>
<td>31.821</td>
<td>63.657</td>
</tr>
<tr>
<td>2</td>
<td>1.061</td>
<td>1.386</td>
<td>1.886</td>
<td>2.9200</td>
<td>4.3027</td>
<td>6.965</td>
<td>9.9248</td>
</tr>
<tr>
<td>3</td>
<td>0.978</td>
<td>1.250</td>
<td>1.638</td>
<td>2.3534</td>
<td>3.1825</td>
<td>4.541</td>
<td>5.8409</td>
</tr>
<tr>
<td>4</td>
<td>0.941</td>
<td>1.190</td>
<td>1.533</td>
<td>2.1318</td>
<td>2.7764</td>
<td>3.747</td>
<td>4.6041</td>
</tr>
<tr>
<td>5</td>
<td>0.920</td>
<td>1.156</td>
<td>1.476</td>
<td>2.0150</td>
<td>2.5706</td>
<td>3.365</td>
<td>4.0321</td>
</tr>
<tr>
<td>6</td>
<td>0.906</td>
<td>1.134</td>
<td>1.440</td>
<td>1.9432</td>
<td>2.4469</td>
<td>3.143</td>
<td>3.7074</td>
</tr>
<tr>
<td>7</td>
<td>0.896</td>
<td>1.119</td>
<td>1.415</td>
<td>1.8946</td>
<td>2.3646</td>
<td>2.998</td>
<td>3.4995</td>
</tr>
<tr>
<td>8</td>
<td>0.889</td>
<td>1.108</td>
<td>1.397</td>
<td>1.8595</td>
<td>2.3060</td>
<td>2.896</td>
<td>3.3554</td>
</tr>
<tr>
<td>9</td>
<td>0.883</td>
<td>1.100</td>
<td>1.383</td>
<td>1.8331</td>
<td>2.2622</td>
<td>2.821</td>
<td>3.2498</td>
</tr>
</tbody>
</table>
t-test using P-values

<table>
<thead>
<tr>
<th>Exp. #</th>
<th>Data x_1, \ldots, x_6</th>
<th>m</th>
<th>s^2</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>650, 510, 470, 570, 410, 370</td>
<td>496.67</td>
<td>10666.67</td>
<td>103.28</td>
</tr>
<tr>
<td>#2</td>
<td>510, 420, 520, 360, 470, 530</td>
<td>468.33</td>
<td>4456.67</td>
<td>66.76</td>
</tr>
<tr>
<td>#3</td>
<td>470, 380, 480, 320, 430, 490</td>
<td>428.33</td>
<td>4456.67</td>
<td>66.76</td>
</tr>
</tbody>
</table>

Test $H_0: \mu = 500$ vs. $H_1: \mu \neq 500$ at significance level $\alpha = .05$.

- **#1:** $P = P(T \leq -.079) + P(T \geq .079) > 2(.20) = .40$
 so $P > \alpha (P > .40 > .05)$ and we accept H_0.

- **#2:** $P = P(T \leq -1.16) + P(T \geq 1.16) \approx 2(.15) = .30$.
 Since $P > \alpha (.30 > .05)$, accept H_0.

- **#3:** $P = P(T \leq -2.63) + P(T \geq 2.63)$

 P is between $2(.025) = .05$ and $2(.01) = .02$ based on the table.
 So $P \leq .05$ and we reject H_0.

- **On a calculator:** $\#1: P = .9401 \quad \#2: P = .2977 \quad \#3: P = .0465$
The χ^2 ("Chi-squared") distribution (Chapter 7.5)

- Used for confidence intervals and hypothesis tests on the unknown parameter σ^2 of the normal distribution, based on the test statistic s^2 (sample variance):

$$\chi^2 = \frac{(n - 1)s^2}{\sigma_0^2} = \sum_{i=1}^{n} \frac{(x_i - m)^2}{\sigma_0^2} \quad d.f. = n - 1 \text{ (same as for } t)$$

Point these out on the graphs:

- The chi-squared distribution with k degrees of freedom has

 Range $[0, \infty)$

 Mean $\mu = k$

 Variance $\sigma^2 = 2k$

 Mode $\chi^2 = k - 2$ (the pdf is maximum for $\chi^2 = k - 2$)

 Median Between k and $k - \frac{2}{3}$.

 Asymptotically decreases $\rightarrow k - \frac{2}{3}$ as $k \rightarrow \infty$.

- Unlike z and t, the pdf for χ^2 is NOT symmetric, and the mean, median, and mode are different.
\(\chi^2 \) (“Chi-squared”) distribution — pdf graphs

The graphs for 1 and 2 degrees of freedom are decreasing:

The rest are “hump” shaped and skewed to the right:
Define $\chi^2_{\alpha, df}$ as the number where the cdf (area left of it) is α:

$$P(\chi^2_{df} \leq \chi^2_{\alpha, df}) = \alpha$$

This is different than how our book did it for the z and t-distributions, because this pdf isn’t symmetric.

We still put 95% of the area in the middle and 2.5% at each end, but the lower and upper cutoffs are determined separately instead of ± each other.
χ^2 table from book (Larsen & Marx, p. 702)

For two-sided test with \(\alpha = .05 \) and \(n = 6 \), look up
\[
\chi^2_{\alpha/2, n-1} = \chi^2_{.025, 5} = .831 \quad \text{and} \quad \chi^2_{1-\alpha/2, n-1} = \chi^2_{.975, 5} = 12.832
\]

<table>
<thead>
<tr>
<th>df</th>
<th>0.010</th>
<th>0.025</th>
<th>0.050</th>
<th>0.10</th>
<th>0.90</th>
<th>0.95</th>
<th>0.975</th>
<th>0.99</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000157</td>
<td>0.000982</td>
<td>0.00393</td>
<td>0.0158</td>
<td>2.706</td>
<td>3.841</td>
<td>5.024</td>
<td>6.635</td>
</tr>
<tr>
<td>2</td>
<td>0.0201</td>
<td>0.0506</td>
<td>0.103</td>
<td>0.211</td>
<td>4.605</td>
<td>5.991</td>
<td>7.378</td>
<td>9.210</td>
</tr>
<tr>
<td>3</td>
<td>0.115</td>
<td>0.216</td>
<td>0.352</td>
<td>0.584</td>
<td>6.251</td>
<td>7.815</td>
<td>9.348</td>
<td>11.345</td>
</tr>
<tr>
<td>4</td>
<td>0.297</td>
<td>0.484</td>
<td>0.711</td>
<td>1.064</td>
<td>7.779</td>
<td>9.488</td>
<td>11.143</td>
<td>13.277</td>
</tr>
<tr>
<td>5</td>
<td>0.554</td>
<td>0.831</td>
<td>1.145</td>
<td>1.610</td>
<td>9.236</td>
<td>11.070</td>
<td>12.832</td>
<td>15.086</td>
</tr>
<tr>
<td>6</td>
<td>0.872</td>
<td>1.237</td>
<td>1.635</td>
<td>2.204</td>
<td>10.645</td>
<td>12.592</td>
<td>14.449</td>
<td>16.812</td>
</tr>
<tr>
<td>7</td>
<td>1.239</td>
<td>1.690</td>
<td>2.167</td>
<td>2.833</td>
<td>12.017</td>
<td>14.067</td>
<td>16.013</td>
<td>18.475</td>
</tr>
<tr>
<td>8</td>
<td>1.646</td>
<td>2.180</td>
<td>2.733</td>
<td>3.490</td>
<td>13.362</td>
<td>15.507</td>
<td>17.535</td>
<td>20.090</td>
</tr>
</tbody>
</table>
Two-sided hypothesis test for variance

Test \(H_0 : \sigma^2 = \sigma_0^2 \) \(\text{vs.} \) \(H_1 : \sigma^2 \neq \sigma_0^2 \)

Decision procedure

Test \(H_0 : \sigma^2 = 10000 \) \(\text{vs.} \) \(H_1 : \sigma^2 \neq 10000 \) at sig. level \(\alpha = .05 \) (so \(\sigma_0 = 100 \))

1. Get a sample \(x_1, \ldots, x_n \).
 650, 510, 470, 570, 410, 370 \quad \text{with} \quad n = 6

2. Calculate \(m = \frac{x_1 + \cdots + x_n}{n} \) and \(s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - m)^2 \).
 \(m = 496.67, \quad s^2 = 10666.67, \quad s = 103.28 \)

3. Calculate the test-statistic \(\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} = \sum_{i=1}^{n} \frac{(x_i - m)^2}{\sigma_0^2} \)
 \(\chi^2 = \frac{(6-1)(10666.67)}{10000} = 5.33 \)

4. Accept \(H_0 \) if \(\chi^2 \) is between \(\chi^2_{\alpha/2,n-1} \) and \(\chi^2_{1-\alpha/2,n-1} \).
 Reject \(H_0 \) otherwise.
 \(\chi^2_{.025,5} = .831 \quad \text{and} \quad \chi^2_{.975,5} = 12.832 \).
 Since \(\chi^2 = 5.33 \) is between these, we accept \(H_0 \).
 (Or, there is insufficient evidence to reject \(\sigma^2 = 10000 \).)
Properties of Chi-squared distribution

1. **Definition of Chi-squared distribution:**

Let Z_1, \ldots, Z_n be independent standard normal variables.

Let $\chi^2_n = Z_1^2 + \cdots + Z_n^2$.

The pdf of the random variable χ^2_n is the “chi-squared distribution with n degrees of freedom.”

The book has the exact formula of the pdf (but you don’t need to know it).

2. **Pooling property:** If X and Y are independent χ^2 random variables with n and m degrees of freedom respectively, then $X + Y$ is a χ^2 random variable with $n + m$ degrees of freedom.