Ch. 7. "One sample" hypothesis tests for μ and σ

Prof. Tesler

Math 186
Winter 2019

Introduction

- Consider the SAT math scores again. Secretly, the mean is 500 and the standard deviation is 100.
- Chapter 5: We assumed $\sigma=100$ was known. We estimated μ from data as a confidence interval centered on the sample mean.
- Chapter 6: We did hypothesis tests about μ under the same circumstances.
- Chapter 7: Both μ and σ are unknown. We estimate both of them from data, either for confidence intervals or hypothesis tests.

Data

Exp. \#	$\begin{aligned} & \text { Values } \\ & x_{1}, \ldots, x_{6} \end{aligned}$	Sample mean m	Sample Var. s^{2}	Sample SD s
\#1	650, 510, 470, 570, 410, 370	496.67	10666.67	103.28
\#2	510, 420, 520, 360, 470, 530	468.33	4456.67	66.76
\#3	470, 380, 480, 320, 430, 490	428.33	4456.67	66.76

Number of standard deviations m is away from μ when

 $\mu=500$ and $\sigma=100$, for sample mean of $n=6$ pointsNumber of standard deviations if σ is known:
The z-score of m is

$$
z=\frac{m-\mu}{\sigma / \sqrt{n}}=\frac{m-500}{100 / \sqrt{6}}
$$

Estimating number of standard deviations if σ is unknown:

The t-score of m is

$$
t=\frac{m-\mu}{s / \sqrt{n}}=\frac{m-500}{s / \sqrt{6}}
$$

- It uses sample standard deviation s in place of σ.
- s is computed from the same data as m. So for t, numerator and denominator depend on data, while for z, only numerator does.
- t has the same degrees of freedom as s; here, $d f=n-1=5$.
- The random variable is called T_{5} (T distribution with 5 degrees of freedom).

Number of standard deviations m is away from μ

Data

Exp.	Values	Sample mean $\#$	Sample Var.	Sample SD s
$\# 1$	$650,510,470,570,410,370$	496.67	10666.67	103.28
$\# 2$	$510,420,520,360,470,530$	468.33	4456.67	66.76
$\# 3$	$470,380,480,320,430,490$	428.33	4456.67	66.76

\#1: $z=\frac{496.67-500}{100 / \sqrt{6}} \approx-.082 \quad t=\frac{496.67-500}{103.28 / \sqrt{6}} \approx-.079 \quad$ Close
\#2: $z=\frac{468.33-500}{100 / \sqrt{6}} \approx-.776 \quad t=\frac{468.33-500}{66.76 / \sqrt{6}} \approx-1.162 \quad$ Far
\#3: $z=\frac{428.33-500}{100 / \sqrt{6}} \approx-1.756 \quad t=\frac{428.33-500}{66.76 / \sqrt{6}} \approx-2.630 \quad$ Far

Student t distribution

- In $z=\frac{m-\mu}{\sigma / \sqrt{n}}$, the numerator depends on x_{1}, \ldots, x_{n} while the denominator is constant.
But in $t=\frac{m-\mu}{s / \sqrt{n}}$, both the numerator and denominator are functions of x_{1}, \ldots, x_{n} (since m and s are functions of them).
- The pdf of t is no longer the standard normal distribution, but instead is a new distribution, T_{n-1}, the t-distribution with $n-1$ degrees of freedom. (d.f. $=n-1$)
- The pdf is still symmetric and "bell-shaped," but not the same "bell" as the normal distribution.
- Degrees of freedom d.f. $=n-1$ match here and in the s^{2} formula.
- As d.f. rises, the curves get closer to the standard normal curve; the curves are really close for $d . f . \geqslant 30$.
- This was developed in 1908 by William Gosset under the pseudonym "Student." He worked at Guinness Brewery with small sample sizes, such as $n=3$.

Student t distribution

The curves from bottom to top (at $t=0$) are for $d . f .=1,2,10,30$. The top one is the standard normal curve:

Student t distribution

Student t distribution

- For the t-distribution with $d f$ degrees of freedom (random variable $\left.T_{d f}\right)$, define $t_{\alpha, d f}$ so that $\quad P\left(T_{d f} \geqslant t_{\alpha, d f}\right)=\alpha$.
t distribution: $t_{\alpha, \text { df }}$ defined so area to right is α

- This is analogous to the standard normal distribution, where z_{α} was defined so the area right of z_{α} is $\alpha: \quad P\left(Z \geqslant z_{\alpha}\right)=\alpha$.

See t table in the back of the book (Table A.2)
 Look up $t_{.025,5}=2.5706$

Student t Distribution with df Degrees of Freedom

α

df	0.20	0.15	0.10	0.05	0.025	0.01	0.005
1	1.3764	1.9626	3.0777	6.3138	12.7062	31.8205	63.6567
2	1.0607	1.3862	1.8856	2.9200	4.3027	6.9646	9.9248
3	0.9785	1.2498	1.6377	2.3534	3.1824	4.5407	5.8409
4	0.9410	1.1896	1.5332	2.1318	2.7764	3.7469	4.6041
5	0.9195	1.1558	1.4759	2.0150	2.5706	3.3649	4.0321
6	0.9057	1.1342	1.4398	1.9432	2.4469	3.1427	3.7074
7	0.8960	1.1192	1.4149	1.8946	2.3646	2.9980	3.4995
8	0.8889	1.1081	1.3968	1.8595	2.3060	2.8965	3.3554
9	0.8834	1.0997	1.3830	1.8331	2.2622	2.8214	3.2498

Note: Rounding and \# decimals is different than the book's version.

Confidence intervals for estimating μ from m

- In Chapter 5, we made 95\% confidence intervals for μ from m assuming we knew σ (and it works for any n):

$$
\left(m-1.96 \frac{\sigma}{\sqrt{n}}, m+1.96 \frac{\sigma}{\sqrt{n}}\right)
$$

- We now replace σ by the estimate s from the data.
1.96 is replaced by a cutoff for t for $6-1=5$ degrees of freedom.

To put 95% of the area in the center, 2.5% on the left, and 2.5% on the right, look up $t_{.025,5}=2.5706$ in the table in the book.

$$
\left(m-\frac{2.5706 s}{\sqrt{6}}, m+\frac{2.5706 s}{\sqrt{6}}\right)
$$

- Note that the cutoff 2.5706 depended on $d f=n-1=5$ and would change for other n 's; also, we still divide by $\sqrt{n}=\sqrt{6}$.

Confidence intervals for estimating μ from m

Formulas for 2 -sided $100(1-\alpha) \%$ confidence interval for μ

When σ is known, use normal distribution

$$
\left(m-\frac{z_{\alpha / 2} \cdot \sigma}{\sqrt{n}}, m+\frac{z_{\alpha / 2} \cdot \sigma}{\sqrt{n}}\right)
$$

95\% confidence interval
($\alpha=0.05$) with $\sigma=100$, $z_{.025}=1.96$:
$\left(m-\frac{1.96(100)}{\sqrt{n}}, m+\frac{1.96(100)}{\sqrt{n}}\right)$

When σ is not known, and m, s estimated from same n points

$$
\left(m-\frac{t_{\alpha / 2, n-1} \cdot s}{\sqrt{n}}, m+\frac{t_{\alpha / 2, n-1} \cdot s}{\sqrt{n}}\right)
$$

A 95\% confidence interval ($\alpha=.05$) when $n=6$; $t_{.025,5}=2.5706$

$$
\left(m-\frac{2.5706 s}{\sqrt{6}}, m+\frac{2.5706 s}{\sqrt{6}}\right)
$$

- The cutoff $z=1.96$ doesn't depend on n, but $t=2.5706$ does ($d f=n-1=5$) and would change for other values of n.
- In both versions, we divide by $\sqrt{n}=\sqrt{6}$.

95\% confidence intervals for μ

Exp. \#	Data x_{1}, \ldots, x_{6}	m	s^{2}	s
\#1	$650,510,470,570,410,370$	496.67	10666.67	103.28
\#2	$510,420,520,360,470,530$	468.33	4456.67	66.76
\#3	$470,380,480,320,430,490$	428.33	4456.67	66.76

When σ known (say $\sigma=100$), use normal distribution
$\# 1:\left(496.67-\frac{1.96(100)}{\sqrt{6}}, 496.67+\frac{1.96(100)}{\sqrt{6}}\right)=(416.65,576.69)$
\#2: $\left(468.33-\frac{1.96(100)}{\sqrt{6}}, 468.33+\frac{1.96(100)}{\sqrt{6}}\right)=(388.31,548.35)$
\#3: $\left(428.33-\frac{1.96(100)}{\sqrt{6}}, 428.33+\frac{1.96(100)}{\sqrt{6}}\right)=(348.31,508.35)$
When σ not known, estimate σ by s and use t-distribution
\#1: $\left(496.67-\frac{2.5706(103.28)}{\sqrt{6}}, 496.67+\frac{2.5706(103.28)}{\sqrt{6}}\right)=(388.28,605.06)$
\#2: $\left(468.33-\frac{2.5706(66.76)}{\sqrt{6}}, 468.33+\frac{2.5706(66.76)}{\sqrt{6}}\right)=(398.27,538.39)$
\#3: $\left(428.33-\frac{2.5706(66.76)}{\sqrt{6}}, 428.33+\frac{2.5706(66.76)}{\sqrt{6}}\right)=\left(\begin{array}{l}(358.27,498.39) \\ (\text { missing 500) })\end{array}\right.$

Hypothesis tests for μ

Test $H_{0}: \mu=500$ vs. $H_{1}: \mu \neq 500 \quad$ at significance level $\alpha=.05$

Exp. \#	Data x_{1}, \ldots, x_{6}	m	s^{2}	s
$\# 1$	$650,510,470,570,410,370$	496.67	10666.67	103.28
$\# 2$	$510,420,520,360,470,530$	468.33	4456.67	66.76
$\# 3$	$470,380,480,320,430,490$	428.33	4456.67	66.76

When σ is known (say $\sigma=100$)

Reject H_{0} when $|z| \geqslant z_{\alpha / 2}=z_{.025}=1.96$.
\#1: $z=-.082,|z|<1.96$ so accept H_{0}.
\#2: $z=-.776,|z|<1.96$ so accept H_{0}.
\#3: $z=-1.756,|z|<1.96$ so accept H_{0}.
When σ is not known, but is estimated by s
Reject H_{0} when $|t| \geqslant t_{\alpha / 2, n-1}=t_{.025,5}=2.5706$.
\#1: $t=-.079,|t|<2.5706$ so accept H_{0}.
\#2: $t=-1.162,|t|<2.5706$ so accept H_{0}.
\#3: $t=-2.630,|t| \geqslant 2.5706$ so reject H_{0}.

See t table in the back of the book (Table A.2)

Use to compute approx. 2-sided P-values for $t=-.079,-1.162,-2.630$, d.f. $=5$

Student t Distribution with df Degrees of Freedom

α

df	0.20	0.15	0.10	0.05	0.025	0.01	0.005
1	1.3764	1.9626	3.0777	6.3138	12.7062	31.8205	63.6567
2	1.0607	1.3862	1.8856	2.9200	4.3027	6.9646	9.9248
3	0.9785	1.2498	1.6377	2.3534	3.1824	4.5407	5.8409
4	0.9410	1.1896	1.5332	2.1318	2.7764	3.7469	4.6041
5	0.9195	1.1558	1.4759	2.0150	2.5706	3.3649	4.0321
6	0.9057	1.1342	1.4398	1.9432	2.4469	3.1427	3.7074
7	0.8960	1.1192	1.4149	1.8946	2.3646	2.9980	3.4995
8	0.8889	1.1081	1.3968	1.8595	2.3060	2.8965	3.3554
9	0.8834	1.0997	1.3830	1.8331	2.2622	2.8214	3.2498

t-test using P-values

Exp. \#	Data x_{1}, \ldots, x_{6}	m	s^{2}	s
\#1	$650,510,470,570,410,370$	496.67	10666.67	103.28
\#2	$510,420,520,360,470,530$	468.33	4456.67	66.76
\#3	$470,380,480,320,430,490$	428.33	4456.67	66.76

Test $H_{0}: \mu=500 \quad$ vs. $\quad H_{1}: \mu \neq 500 \quad$ at significance level $\alpha=.05$.

- \#1: $P=P(T \leqslant-.079)+P(T \geqslant .079)>2(.20)=.40$ so $P>\alpha(P>.40>.05)$ and we accept H_{0}.
- \#2: $P=P(T \leqslant-1.16)+P(T \geqslant 1.16) \approx 2(.15)=.30$.

Since $P>\alpha(.30>.05)$, accept H_{0}.

- \#3: $P=P(T \leqslant-2.63)+P(T \geqslant 2.63)$
P is between $2(.025)=.05$ and $2(.01)=.02$ based on the table.
So $P \leqslant .05$ and we reject H_{0}.
- On a calculator: \#1: $P=.9401 \quad \# 2: P=.2977 \quad \# 3: P=.0465$

7.5. The χ^{2} ("Chi-squared") distribution Hypothesis tests for σ^{2}

The χ^{2} ("Chi-squared") distribution (Chapter 7.5)

- We'll do a hypothesis test for the variance, σ^{2}, of the normal distribution, just like we did for the mean, μ :

$$
H_{0}: \sigma^{2}=\sigma_{0}^{2} \quad \text { vs. } \quad H_{1}: \sigma^{2} \neq \sigma_{0}^{2}
$$

Example: $\quad H_{0}: \sigma^{2}=10000$ vs. $H_{1}: \sigma^{2} \neq 10000$

- Sample variance s^{2} estimates theoretical variance σ^{2}. Use the ratio $s^{2} / \sigma_{0}{ }^{2}$ to test consistency with H_{0}.
Given a sample of size n, compute s^{2}, and plug it into this formula:

$$
\text { Chi-squared: } \chi^{2}=\frac{(n-1) s^{2}}{\sigma_{0}^{2}}=\sum_{i=1}^{n} \frac{\left(x_{i}-m\right)^{2}}{\sigma_{0}^{2}}
$$

Degrees of freedom: $d f=n-1$ (same as for t)

- This test statistic is called Chi-squared.

Note that χ and x are different.
χ is the Greek letter chi. The data is x_{i}, with the letter x.

The χ^{2} ("Chi-squared") distribution (Chapter 7.5)

- The chi-squared distribution with k degrees of freedom has

$$
\begin{array}{ll}
\text { Range } & {[0, \infty)} \\
\text { Mean } & \mu=k
\end{array}
$$

Variance $\quad \sigma^{2}=2 k$
Mode $\quad \chi^{2}=k-2$ (the pdf is maximum for $\chi^{2}=k-2$)
Median Between k and $k-\frac{2}{3}$.
Asymptotically decreases $\rightarrow k-\frac{2}{3}$ as $k \rightarrow \infty$.

- Unlike z and t, the pdf for χ^{2} is NOT symmetric, and the mean, median, and mode are different.

χ^{2} ("Chi-squared") distribution — pdf graphs

The graphs for 1 and 2 degrees of freedom are decreasing:

The rest are "hump" shaped and skewed to the right:

χ^{2} ("Chi-squared") distribution — Cutoffs

- Define $\chi_{\alpha, d f}^{2}$ as the number where the cdf (area left of it) is α :

$$
P\left(\chi_{d f}^{2} \leqslant \chi_{\alpha, d f}^{2}\right)=\alpha
$$

- This is different than how our book did it for the z and t-distributions, because this pdf isn't symmetric.
- We still put 95% of the area in the middle and 2.5% at each end, but the lower and upper cutoffs are determined separately instead of \pm each other.

See χ^{2} table in the back of the book (Table A.3)

For two-sided test with $\alpha=.05$ and $n=6$, look up

$$
\chi_{\alpha / 2, n-1}^{2}=\chi_{.025,5}^{2}=.831 \quad \text { and } \quad \chi_{1-\alpha / 2, n-1}^{2}=\chi_{.975,5}^{2}=12.832
$$

χ^{2} Distribution with df Degrees of Freedom

	p							
df	0.010	0.025	0.050	0.10	0.90	0.95	0.975	0.99
1	0.000157	0.000982	0.00393	0.015	2.705	3.841	5.023	6.634
2	0.020	0.050	0.102	0.210	4.605	5.991	7.377	9.210
3	0.114	0.215	0.351	0.584	6.251	7.814	9.348	11.344
4	0.297	0.484	0.710	1.063	7.779	9.487	11.143	13.276
5	0.554	0.831	1.145	1.610	9.236	11.070	12.832	15.086
6	0.872	1.237	1.635	2.204	10.644	12.591	14.449	16.811
7	1.239	1.689	2.167	2.833	12.017	14.067	16.012	18.475
8	1.646	2.179	2.732	3.489	13.361	15.507	17.534	20.090
9	2.087	2.700	3.325	4.168	14.683	16.918	19.022	21.665

Two-sided hypothesis test for variance

Test $H_{0}: \sigma^{2}=\sigma_{0}{ }^{2}$ vs. $H_{1}: \sigma^{2} \neq \sigma_{0}{ }^{2}$

Decision procedure

Test $H_{0}: \sigma^{2}=10000$ vs. $H_{1}: \sigma^{2} \neq 10000$ at sig. level $\alpha=.05\left(\right.$ so $\left.\sigma_{0}=100\right)$
(1) Get a sample x_{1}, \ldots, x_{n}. $650,510,470,570,410,370$ with $n=6$
(2) Calculate $m=\frac{x_{1}+\cdots+x_{n}}{n}$ and $s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-m\right)^{2}$.

$$
m=496.67, \quad s^{2}=10666.67, \quad s=103.28
$$

(3) Calculate the test-statistic $\chi^{2}=\frac{(n-1) s^{2}}{\sigma_{0}{ }^{2}}=\sum_{i=1}^{n} \frac{\left(x_{i}-m\right)^{2}}{\sigma_{0}{ }^{2}}$

$$
\chi^{2}=\frac{(6-1)(10666.67)}{10000}=5.33
$$

(4) Accept H_{0} if χ^{2} is between $\chi_{\alpha / 2, n-1}^{2}$ and $\chi_{1-\alpha / 2, n-1}^{2}$. Reject H_{0} otherwise.

$$
\chi_{.025,5}^{2}=.831 \text { and } \chi_{.975,5}^{2}=12.832
$$

Since $\chi^{2}=5.33$ is between these, we accept H_{0}. (Or, there is insufficient evidence to reject $\sigma^{2}=10000$.)

Mean, Median, and Mode of χ^{2}

- $H_{0}: \sigma^{2}=\sigma_{0}^{2} \quad$ vs. $H_{1}: \sigma^{2} \neq \sigma_{0}{ }^{2}$
- Unlike z and t, the mean, median, and mode of χ^{2} are different.

Mean $\mu=k \quad$ Median $\approx k-2 / 3 \quad$ Mode $\chi^{2}=k-2$
Question: Which of these should χ^{2} be close to if H_{0} holds?

- Answer: The median.
- The hypothesis test cutoffs and P-values are based on the cdf.
- The median is based on the cdf (it's where the cdf equals $1 / 2$), while mean and mode are not.
- The median is regarded as most consistent with H_{0}.

Properties of Chi-squared distribution

(1) Definition of Chi-squared distribution:

Let Z_{1}, \ldots, Z_{k} be independent standard normal variables.
Let $\chi_{k}^{2}=Z_{1}^{2}+\cdots+Z_{k}{ }^{2}$.
The pdf of the random variable χ_{k}^{2} is the "chi-squared distribution with k degrees of freedom."
The book has the exact formula of the pdf (but you don't need to know it).
(2) Pooling property: If X and Y are independent χ^{2} random variables with k and m degrees of freedom respectively, then $X+Y$ is a χ^{2} random variable with $k+m$ degrees of freedom.

