Ch. 7. "One sample" hypothesis tests for μ and σ

Prof. Tesler

Math 186 Winter 2019

Prof. Tesler

Ch. 7: One sample hypoth. tests for $\mu,\,\sigma$

Math 186 / Winter 2019 1 / 23

Introduction

- Consider the SAT math scores again.
 Secretly, the mean is 500 and the standard deviation is 100.
- Chapter 5: We assumed $\sigma = 100$ was known. We estimated μ from data as a confidence interval centered on the sample mean.
- Chapter 6: We did hypothesis tests about μ under the same circumstances.
- Chapter 7: Both μ and σ are unknown. We estimate both of them from data, either for confidence intervals or hypothesis tests.

Data

		Sample	Sample	Sample
Exp.	Values	mean	Var.	SD
#	x_1, \ldots, x_6	т	s^2	S
#1	650, 510, 470, 570, 410, 370	496.67	10666.67	103.28
#2	510, 420, 520, 360, 470, 530	468.33	4456.67	66.76
#3	470, 380, 480, 320, 430, 490	428.33	4456.67	66.76

Number of standard deviations *m* is away from μ when $\mu = 500$ and $\sigma = 100$, for sample mean of n = 6 points

Number of standard deviations if σ is known:

The *z*-score of *m* is

$$z = \frac{m-\mu}{\sigma/\sqrt{n}} = \frac{m-500}{100/\sqrt{6}}$$

Estimating number of standard deviations if σ is unknown:

The *t*-score of *m* is

$$=\frac{m-\mu}{s/\sqrt{n}}=\frac{m-500}{s/\sqrt{6}}$$

- It uses sample standard deviation s in place of σ .
- *s* is computed from the same data as *m*. So for *t*, numerator and denominator depend on data, while for *z*, only numerator does.
- *t* has the same degrees of freedom as *s*; here, df = n 1 = 5.
- The random variable is called T₅ (T distribution with 5 degrees of freedom).

Number of standard deviations m is away from μ

Data

		Sample	Sample	Sample]
Exp.	Values	mean	Var.	SD	
#	x_1, \ldots, x_6	т	s^2	S	
#1	650, 510, 470, 570, 410, 370	496.67	10666.67	103.28	
#2	510, 420, 520, 360, 470, 530	468.33	4456.67	66.76	
#3	470, 380, 480, 320, 430, 490	428.33	4456.67	66.76	

#1: $z = \frac{496.67 - 500}{100/\sqrt{6}} \approx -.082$ $t = \frac{496.67 - 500}{103.28/\sqrt{6}} \approx -.079$ **Close**

#2:
$$z = \frac{468.33 - 500}{100/\sqrt{6}} \approx -.776$$
 $t = \frac{468.33 - 500}{66.76/\sqrt{6}} \approx -1.162$ Far

#3:
$$z = \frac{428.33 - 500}{100/\sqrt{6}} \approx -1.756$$
 $t = \frac{428.33 - 500}{66.76/\sqrt{6}} \approx -2.630$ **Far**

Student *t* distribution

- In z = m-μ/σ/√n, the numerator depends on x₁,..., x_n while the denominator is constant. But in t = m-μ/s/√n, both the numerator and denominator are functions of x₁,..., x_n (since m and s are functions of them).
- The pdf of *t* is no longer the standard normal distribution, but instead is a new distribution, T_{n-1} , the *t*-distribution with n-1 degrees of freedom. (*d*.*f*. = n-1)
- The pdf is still symmetric and "bell-shaped," *but not the same "bell" as the normal distribution.*
- Degrees of freedom d.f. = n-1 match here and in the s^2 formula.
- As d.f. rises, the curves get closer to the standard normal curve; the curves are really close for $d.f. \ge 30$.
- This was developed in 1908 by William Gosset under the pseudonym "Student." He worked at Guinness Brewery with small sample sizes, such as n = 3.

Student *t* distribution

The curves from bottom to top (at t = 0) are for d.f. = 1, 2, 10, 30. The top one is the standard normal curve:

> Student t distribution 0.4 0.35 0.3 0.25 Jp 0.2 0.15 0.1 0.05 -3 -2 -1 0 1 2 3

Student *t* distribution

• For the *t*-distribution with *df* degrees of freedom (random variable T_{df}), define $t_{\alpha,df}$ so that $P(T_{df} \ge t_{\alpha,df}) = \alpha$.

• This is analogous to the standard normal distribution, where z_{α} was defined so the area right of z_{α} is α : $P(Z \ge z_{\alpha}) = \alpha$.

See *t* table in the back of the book (Table A.2) Look up $t_{.025,5} = 2.5706$

Student t Distribution with df Degrees of Freedom

 α

df	0.20	0.15	0.10	0.05	0.025	0.01	0.005
1	1.3764	1.9626	3.0777	6.3138	12.7062	31.8205	63.6567
2	1.0607	1.3862	1.8856	2.9200	4.3027	6.9646	9.9248
3	0.9785	1.2498	1.6377	2.3534	3.1824	4.5407	5.8409
4	0.9410	1.1896	1.5332	2.1318	2.7764	3.7469	4.6041
5	0.9195	1.1558	1.4759	2.0150	2.5706	3.3649	4.0321
6	0.9057	1.1342	1.4398	1.9432	2.4469	3.1427	3.7074
7	0.8960	1.1192	1.4149	1.8946	2.3646	2.9980	3.4995
8	0.8889	1.1081	1.3968	1.8595	2.3060	2.8965	3.3554
9	0.8834	1.0997	1.3830	1.8331	2.2622	2.8214	3.2498

Note: Rounding and # decimals is different than the book's version.

Confidence intervals for estimating μ from *m*

 In Chapter 5, we made 95% confidence intervals for μ from m assuming we knew σ (and it works for any n):

$$\left(m-1.96\frac{\sigma}{\sqrt{n}}, m+1.96\frac{\sigma}{\sqrt{n}}\right)$$

We now replace σ by the estimate s from the data.
 1.96 is replaced by a cutoff for t for 6 - 1 = 5 degrees of freedom.

To put 95% of the area in the center, 2.5% on the left, and 2.5% on the right, look up $t_{.025,5} = 2.5706$ in the table in the book.

$$\left(m - \frac{2.5706\,s}{\sqrt{6}}, m + \frac{2.5706\,s}{\sqrt{6}}\right)$$

• Note that the cutoff 2.5706 depended on df = n - 1 = 5 and would change for other *n*'s; also, we still divide by $\sqrt{n} = \sqrt{6}$.

Confidence intervals for estimating μ from m

Formulas for 2-sided $100(1 - \alpha)$ % confidence interval for μ

When σ is known, use normal distribution

$$\left(m - \frac{z_{\alpha/2} \cdot \sigma}{\sqrt{n}}, m + \frac{z_{\alpha/2} \cdot \sigma}{\sqrt{n}}\right)$$

95% confidence interval $(\alpha = 0.05)$ with $\sigma = 100$, $z_{.025} = 1.96$:

$$\left(m - \frac{1.96(100)}{\sqrt{n}}, m + \frac{1.96(100)}{\sqrt{n}}\right)$$

When σ is not known, and m, s estimated from same n points

$$\left(m - \frac{t_{\alpha/2, n-1} \cdot s}{\sqrt{n}}, m + \frac{t_{\alpha/2, n-1} \cdot s}{\sqrt{n}}\right)$$

A 95% confidence interval $(\alpha = .05)$ when n = 6; $t_{.025,5} = 2.5706$

$$\left(m - \frac{2.5706\,s}{\sqrt{6}}, m + \frac{2.5706\,s}{\sqrt{6}}\right)$$

The cutoff z = 1.96 doesn't depend on n, but t = 2.5706 does (df = n − 1 = 5) and would change for other values of n.
In both versions, we divide by √n = √6.

95% confidence intervals for μ

Exp. #	Data $x_1,, x_6$	т	s^2	S
#1	650, 510, 470, 570, 410, 370	496.67	10666.67	103.28
#2	510, 420, 520, 360, 470, 530	468.33	4456.67	66.76
#3	470, 380, 480, 320, 430, 490	428.33	4456.67	66.76

When σ known (say $\sigma = 100$), use normal distribution

#1:
$$(496.67 - \frac{1.96(100)}{\sqrt{6}}, 496.67 + \frac{1.96(100)}{\sqrt{6}}) = (416.65, 576.69)$$

#2: $(468.33 - \frac{1.96(100)}{\sqrt{6}}, 468.33 + \frac{1.96(100)}{\sqrt{6}}) = (388.31, 548.35)$
#3: $(428.33 - \frac{1.96(100)}{\sqrt{6}}, 428.33 + \frac{1.96(100)}{\sqrt{6}}) = (348.31, 508.35)$

When σ not known, estimate σ by *s* and use *t*-distribution

#1:
$$(496.67 - \frac{2.5706(103.28)}{\sqrt{6}}, 496.67 + \frac{2.5706(103.28)}{\sqrt{6}}) = (388.28, 605.06)$$

#2: $(468.33 - \frac{2.5706(66.76)}{\sqrt{6}}, 468.33 + \frac{2.5706(66.76)}{\sqrt{6}}) = (398.27, 538.39)$
#3: $(428.33 - \frac{2.5706(66.76)}{\sqrt{6}}, 428.33 + \frac{2.5706(66.76)}{\sqrt{6}}) = (358.27, 498.39)$
missing 500)

Prof. Tesler

Math 186 / Winter 2019

11/23

Hypothesis tests for μ

Test H_0 : $\mu = 500$ vs. H_1 : $\mu \neq 500$ at significance level $\alpha = .05$

Exp. #	Data $x_1,, x_6$	т	s^2	S
#1	650, 510, 470, 570, 410, 370	496.67	10666.67	103.28
#2	510, 420, 520, 360, 470, 530	468.33	4456.67	66.76
#3	470, 380, 480, 320, 430, 490	428.33	4456.67	66.76

When σ is known (say $\sigma = 100$)

Reject H_0 when $|z| \ge z_{\alpha/2} = z_{.025} = 1.96$.

#1: z = -.082, |z| < 1.96 so accept H_0 . #2: z = -.776, |z| < 1.96 so accept H_0 . #3: z = -1.756, |z| < 1.96 so accept H_0 .

When σ is not known, but is estimated by *s*

Reject H_0 when $|t| \ge t_{\alpha/2,n-1} = t_{.025,5} = 2.5706$.

#1: t = -.079, |t| < 2.5706 so accept H_0 . #2: t = -1.162, |t| < 2.5706 so accept H_0 . #3: t = -2.630, $|t| \ge 2.5706$ so reject H_0 .

See *t* table in the back of the book (Table A.2) Use to compute approx. 2-sided *P*-values for t = -.079, -1.162, -2.630, d.f. = 5

Student t Distribution with df Degrees of Freedom

 α

df0.200.150.100.050.0250.010.00511.37641.96263.07776.313812.706231.820563.656721.06071.38621.88562.92004.30276.96469.924830.97851.24981.63772.35343.18244.54075.840940.94101.18961.53322.13182.77643.74694.604150.91951.15581.47592.01502.57063.36494.032160.90571.13421.43981.94322.44693.14273.707470.89601.11921.41491.89462.36462.99803.499580.88891.10811.39681.85952.30602.89653.355490.88341.09971.38301.83312.26222.82143.2498								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	df	0.20	0.15	0.10	0.05	0.025	0.01	0.005
21.06071.38621.88562.92004.30276.96469.924830.97851.24981.63772.35343.18244.54075.840940.94101.18961.53322.13182.77643.74694.604150.91951.15581.47592.01502.57063.36494.032160.90571.13421.43981.94322.44693.14273.707470.89601.11921.41491.89462.36462.99803.499580.88891.10811.39681.85952.30602.89653.355490.88341.09971.38301.83312.26222.82143.2498	1	1.3764	1.9626	3.0777	6.3138	12.7062	31.8205	63.6567
30.97851.24981.63772.35343.18244.54075.840940.94101.18961.53322.13182.77643.74694.604150.91951.15581.47592.01502.57063.36494.032160.90571.13421.43981.94322.44693.14273.707470.89601.11921.41491.89462.36462.99803.499580.88891.10811.39681.85952.30602.89653.355490.88341.09971.38301.83312.26222.82143.2498	2	1.0607	1.3862	1.8856	2.9200	4.3027	6.9646	9.9248
40.94101.18961.53322.13182.77643.74694.604150.91951.15581.47592.01502.57063.36494.032160.90571.13421.43981.94322.44693.14273.707470.89601.11921.41491.89462.36462.99803.499580.88891.10811.39681.85952.30602.89653.355490.88341.09971.38301.83312.26222.82143.2498	3	0.9785	1.2498	1.6377	2.3534	3.1824	4.5407	5.8409
50.91951.15581.47592.01502.57063.36494.032160.90571.13421.43981.94322.44693.14273.707470.89601.11921.41491.89462.36462.99803.499580.88891.10811.39681.85952.30602.89653.355490.88341.09971.38301.83312.26222.82143.2498	4	0.9410	1.1896	1.5332	2.1318	2.7764	3.7469	4.6041
60.90571.13421.43981.94322.44693.14273.707470.89601.11921.41491.89462.36462.99803.499580.88891.10811.39681.85952.30602.89653.355490.88341.09971.38301.83312.26222.82143.2498	5	0.9195	1.1558	1.4759	2.0150	2.5706	3.3649	4.0321
70.89601.11921.41491.89462.36462.99803.499580.88891.10811.39681.85952.30602.89653.355490.88341.09971.38301.83312.26222.82143.2498	6	0.9057	1.1342	1.4398	1.9432	2.4469	3.1427	3.7074
80.88891.10811.39681.85952.30602.89653.355490.88341.09971.38301.83312.26222.82143.2498	7	0.8960	1.1192	1.4149	1.8946	2.3646	2.9980	3.4995
90.88341.09971.38301.83312.26222.82143.2498	8	0.8889	1.1081	1.3968	1.8595	2.3060	2.8965	3.3554
	9	0.8834	1.0997	1.3830	1.8331	2.2622	2.8214	3.2498

Exp. #	Data $x_1,, x_6$	т	s^2	S
#1	650, 510, 470, 570, 410, 370	496.67	10666.67	103.28
#2	510, 420, 520, 360, 470, 530	468.33	4456.67	66.76
#3	470, 380, 480, 320, 430, 490	428.33	4456.67	66.76

Test H_0 : $\mu = 500$ vs. H_1 : $\mu \neq 500$ at significance level $\alpha = .05$.

- #1: $P = P(T \le -.079) + P(T \ge .079) > 2(.20) = .40$ so $P > \alpha$ (P > .40 > .05) and we accept H_0 .
- #2: $P = P(T \le -1.16) + P(T \ge 1.16) \approx 2(.15) = .30$. Since $P > \alpha$ (.30 > .05), accept H_0 .
- #3: $P = P(T \le -2.63) + P(T \ge 2.63)$

P is between 2(.025) = .05 and 2(.01) = .02 based on the table. So $P \leq .05$ and we reject H_0 .

• On a calculator: #1: P = .9401 #2: P = .2977 #3: P = .0465

7.5. The χ^2 ("Chi-squared") distribution Hypothesis tests for σ^2

The χ^2 ("Chi-squared") distribution (Chapter 7.5)

• We'll do a hypothesis test for the variance, σ^2 , of the normal distribution, just like we did for the mean, μ :

$$H_0$$
: $\sigma^2 = \sigma_0^2$ vs. H_1 : $\sigma^2 \neq \sigma_0^2$

Example: H_0 : $\sigma^2 = 10000$ vs. H_1 : $\sigma^2 \neq 10000$

• Sample variance s^2 estimates theoretical variance σ^2 . Use the ratio s^2/σ_0^2 to test consistency with H_0 . Given a sample of size *n*, compute s^2 , and plug it into this formula:

Chi-squared:
$$\chi^2 = \frac{(n-1)s^2}{{\sigma_0}^2} = \sum_{i=1}^n \frac{(x_i - m)^2}{{\sigma_0}^2}$$

Degrees of freedom: df = n - 1 (same as for *t*)

This test statistic is called *Chi-squared*.
 Note that *χ* and *x* are different.
 χ is the Greek letter chi. The data is *x_i*, with the letter *x*.

The χ^2 ("Chi-squared") distribution (Chapter 7.5)

• The chi-squared distribution with *k* degrees of freedom has

Range $[0, \infty)$ Mean $\mu = k$ Variance $\sigma^2 = 2k$ Mode $\chi^2 = k - 2$ (the pdf is maximum for $\chi^2 = k - 2$)MedianBetween k and $k - \frac{2}{3}$.
Asymptotically decreases $\rightarrow k - \frac{2}{3}$ as $k \rightarrow \infty$.

• Unlike *z* and *t*, the pdf for χ^2 is NOT symmetric, and the mean, median, and mode are different.

Prof. Tesler

χ^2 ("Chi-squared") distribution — pdf graphs

The graphs for 1 and 2 degrees of freedom are decreasing:

The rest are "hump" shaped and skewed to the right:

Prof. Tesler

Ch. 7: One sample hypoth. tests for $\mu,\,\sigma$

Math 186 / Winter 2019 18 / 23

χ^2 ("Chi-squared") distribution — Cutoffs

- Define $\chi^2_{\alpha,df}$ as the number where the cdf (area *left* of it) is α : $P(\chi^2_{df} \leq \chi^2_{\alpha,df}) = \alpha$
- This is different than how our book did it for the z and t-distributions, because this pdf isn't symmetric.
- We still put 95% of the area in the middle and 2.5% at each end, but the lower and upper cutoffs are determined separately instead of \pm each other.

See χ^2 table in the back of the book (Table A.3) For two-sided test with $\alpha = .05$ and n = 6, look up $\chi^2_{\alpha/2,n-1} = \chi^2_{.025,5} = .831$ and $\chi^2_{1-\alpha/2,n-1} = \chi^2_{.975,5} = 12.832$

~	•	
r	1	
L	,	
г	-	

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.99 6.634 9.210
1 0.000157 0.000982 0.00393 0.015 2.705 3.841 5.023 6	6.634 9.210
	9.210
2 0.020 0.050 0.102 0.210 4.605 5.991 7.377 9	
3 0.114 0.215 0.351 0.584 6.251 7.814 9.348 11	1.344
40.2970.4840.7101.0637.7799.48711.14313	3.276
5 0.554 0.831 1.145 1.610 9.236 11.070 12.832 15	5.086
6 0.872 <u>1.237</u> 1.635 2.204 10.644 12.591 <u>14.449</u> 16	6.811
7 1.239 1.689 2.167 2.833 12.017 14.067 16.012 18	8.475
8 1.646 2.179 2.732 3.489 13.361 15.507 17.534 20	0.090
9 2.087 2.700 3.325 4.168 14.683 16.918 19.022 21	1.665

Two-sided hypothesis test for variance Test $H_0: \sigma^2 = \sigma_0^2$ vs. $H_1: \sigma^2 \neq \sigma_0^2$

Decision procedure Test $H_0: \sigma^2 = 10000$ vs. $H_1: \sigma^2 \neq 10000$ at sig. level $\alpha = .05$ (so $\sigma_0 = 100$) • Get a sample x_1, \ldots, x_n . 650, 510, 470, 570, 410, 370 with n = 62 Calculate $m = \frac{x_1 + \dots + x_n}{n}$ and $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - m)^2$. $m = 496.67, s^2 = 10666.67, s = 103.28$ 3 Calculate the test-statistic $\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} = \sum_{i=1}^n \frac{(x_i - m)^2}{\sigma_0^2}$ $\chi^2 = \frac{(6-1)(10666.67)}{10000} = 5.33$ • Accept H_0 if χ^2 is between $\chi^2_{\alpha/2,n-1}$ and $\chi^2_{1-\alpha/2,n-1}$. Reject H_0 otherwise. $\chi^2_{0.025,5} = .831$ and $\chi^2_{.975,5} = 12.832$. Since $\chi^2 = 5.33$ is between these, we accept H_0 . (Or, there is insufficient evidence to reject $\sigma^2 = 10000$.)

Mean, Median, and Mode of χ^2

• $H_0: \sigma^2 = \sigma_0^2$ VS. $H_1: \sigma^2 \neq \sigma_0^2$

- Unlike *z* and *t*, the mean, median, and mode of χ^2 are different. Mean $\mu = k$ Median $\approx k - 2/3$ Mode $\chi^2 = k - 2$ Question: Which of these should χ^2 be close to if H_0 holds?
- **Answer:** The median.
 - The hypothesis test cutoffs and *P*-values are based on the cdf.
 - The median is based on the cdf (it's where the cdf equals 1/2), while mean and mode are not.
 - The median is regarded as most consistent with H_0 .

Definition of Chi-squared distribution:

Let Z_1, \ldots, Z_k be independent standard normal variables. Let $\chi_k^2 = Z_1^2 + \cdots + Z_k^2$.

The pdf of the random variable χ_k^2 is the "chi-squared distribution with *k* degrees of freedom."

The book has the exact formula of the pdf (but you don't need to know it).

2 **Pooling property:** If *X* and *Y* are independent χ^2 random variables with *k* and *m* degrees of freedom respectively, then *X* + *Y* is a χ^2 random variable with *k* + *m* degrees of freedom.