Math 186, Winter 2006, Prof. Tesler – March 10, 2006 "One sample" hypothesis tests for μ and σ

A normal distribution has mean μ and standard deviation σ , but the value of μ (and possibly σ) is not known to us! We must determine μ (and possibly σ) experimentally.

Let y_1, \ldots, y_n be a random sample of size n from this normal distribution.

Let
$$\bar{y} = (y_1 + \ldots + y_n)/n$$
 be the sample mean and $s^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \bar{y})^2 = \frac{n\left(\sum_{i=1}^n y_i^2\right) - \left(\sum_{i=1}^n y_i\right)^2}{n(n-1)}$ be the sample variance.

We want to test \bar{y} as an estimate of μ (is \bar{y} close to a constant μ_0 ?) or s as an estimate of σ (is s close to a constant σ_0 ?) under various circumstances.

z-test: μ unknown, σ known; testing μ . See Chap. 5.3 and 6.2. Note: z_{α} is defined so that $P(Z \ge z_{\alpha}) = \alpha$ in the standard normal distribution. Table A.1 gives $\Phi(z) = P(Z \le z)$ so solve $\Phi(z_{\alpha}) = 1 - \alpha$.

		Test Statistic:	Test H_0 at α sig. level:	$100(1-\alpha)\%$ conf. int. for μ
type	Hypotheses	Z	Reject H_0 when	under H_0
one-sided (right)	$H_0: \mu = \mu_0 \text{ vs. } H_1: \mu > \mu_0$	_	$z \ge z_{\alpha}$	$\left(-\infty \ , \ \bar{y} + z_{\alpha} \frac{\sigma}{\sqrt{n}}\right)$
one-sided (left)	$H_0: \mu = \mu_0$ vs. $H_1: \mu < \mu_0$	$z = \frac{y - \mu_0}{\sigma / \sqrt{n}}$	$z \leq -z_{\alpha}$	$\left(ar{y} - z_lpha rac{\sigma}{\sqrt{n}} \;,\; \infty ight)$
two-sided	$H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$	<i>37</i> v <i>n</i>	$z \leq -z_{\alpha/2}$ or $z \geq z_{\alpha/2}$	$\left(\bar{y} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} , \ \bar{y} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right)$

Student's *t*-test: μ unknown, σ unknown; testing μ . See Chap. 7.2–7.4 Note: $t_{\alpha,k}$ is defined so that $P(T_k \ge t_{\alpha,k}) = \alpha$ in the *t* distribution with *k* degrees of freedom. Table A.2.

/	× , , ,		_	
		Test Statistic:	Test H_0 at α sig. level:	$100(1-\alpha)\%$ conf. int. for μ
type	Hypotheses	T_{n-1}	Reject H_0 when	under H_0
one-sided (right)	$H_0: \mu = \mu_0 \text{ vs. } H_1: \mu > \mu_0$	_	$t \ge t_{\alpha,n-1}$	$\left(-\infty, \bar{y}+t_{\alpha,n-1}\frac{s}{\sqrt{n}}\right)$
one-sided (left)	$H_0: \mu = \mu_0$ vs. $H_1: \mu < \mu_0$	$t = \frac{y - \mu_0}{s / \sqrt{n}}$	$t \le -t_{\alpha,n-1}$	$\left(\bar{y}-t_{\alpha,n-1}\frac{s}{\sqrt{n}},\infty\right)$
two-sided	$H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$		$t \leq -t_{\alpha/2,n-1}$ or $t \geq t_{\alpha/2,n-1}$	$\left(\bar{y} - t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}, \bar{y} + t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}\right)$

 χ^2 -test ("chi-squared test"): μ unknown, σ unknown; testing σ^2 . See Chap. 7.5. Note: $\chi^2_{\alpha,k}$ is defined so that $P(\chi^2_k \leq \chi^2_{\alpha,k}) = \alpha$ in the χ^2 distribution with k degrees of freedom. This is backwards from $t_{\alpha,k}$. Table A.3.

		Test Statistic:	Test H_0 at α sig. level:	$100(1-\alpha)\%$ conf. int. for σ^2
type	Hypotheses	χ^2_{n-1}	Reject H_0 when	under H_0
one-sided (right)	$H_0: \sigma^2 = {\sigma_0}^2 \text{ vs. } H_1: \sigma^2 > {\sigma_0}^2$		$\chi^2 \ge \chi^2_{1-\alpha,n-1}$	$\left(0, \frac{(n-1)s^2}{\chi^2_{\alpha,n-1}}\right)$
one-sided (left)	$H_0: \sigma^2 = {\sigma_0}^2$ vs. $H_1: \sigma^2 < {\sigma_0}^2$	$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$	$\chi^2 \le \chi^2_{\alpha,n-1}$	$\left(\frac{(n-1)s^2}{\chi^2_{1-\alpha,n-1}}, \infty\right)$
two-sided	$H_0: \sigma^2 = {\sigma_0}^2 \text{ vs. } H_1: \sigma^2 \neq {\sigma_0}^2$	×	$\chi^2 \leq \chi^2_{\alpha/2,n-1}$ or $\chi^2 \geq \chi^2_{1-\alpha/2,n-1}$	$\left(rac{(n-1)s^2}{\chi^2_{1-lpha/2,n-1}}\;,\;rac{(n-1)s^2}{\chi^2_{lpha/2,n-1}} ight)$