A continuous probability distribution: Throwing darts at a dartboard (3.4)

Prof. Tesler

Math 186 Winter 2020

Example

- Pick a real number x between 20 and 30 with all real values in [20, 30] equally likely.
- Sample space: S = [20, 30]
- Number of outcomes: $|S| = \infty$
- Probability of each outcome: $P(X = x) = \frac{1}{\infty} = 0$
- Yet, $P(X \le 21.5) = 15\%$

Continuous distributions

- The sample space S is often a subset of \mathbb{R}^n . We'll do the 1-dimensional case $S \subset \mathbb{R}$.
- The *probability density function (pdf)* $f_X(x)$ is defined differently than the discrete case:
 - $f_X(x)$ is a real-valued function on *S* with $f_X(x) \ge 0$ for all $x \in S$.
 - $\int_{S} f_X(x) dx = 1$ (vs. $\sum_{x \in S} p_X(x) = 1$ for discrete)
 - The probability of event $A \subset S$ is $P(A) = \int f_X(x) dx$ (vs. $\sum p_X(x)$).
 - In *n* dimensions, use *n*-dimensional integrals instead.

Uniform distribution

- Let a < b be real numbers.
- The *Uniform Distribution* on [*a*, *b*] is that all numbers in [*a*, *b*] are "equally likely."

• More precisely,
$$f_X(x) = \begin{cases} \frac{1}{b-a} & \text{if } a \leq x \leq b; \\ 0 & \text{otherwise.} \end{cases}$$

Uniform distribution (real case)

The uniform distribution on [20, 30]

We could regard the sample space as [20, 30], or as all reals.

$$f_{X}(x) = \begin{cases} 1/10 & \text{for } 20 \le x \le 30; \\ 0 & \text{otherwise.} \end{cases} \xrightarrow{\mathfrak{S}} \begin{array}{c} \mathfrak{S} \\ \mathfrak$$

Probability of a point, in the continuous case

Probability of a point

- For any continuous random variable, the probability of a point, *b*, is $P(X = b) = \int_{b}^{b} f_{X}(x) dx = \text{area of line segment} = 0.$
- The *probability density* $f_X(b)$ may be nonzero, but integrating over a single point gives *probability* = 0.

$P(X \le b) = P(X < b) + P(X = b)$

- Continuous case: P(X = b) = 0, so $P(X \le b) = P(X < b)$. Similarly, $P(a \le X) = P(a < X)$.
- **Discrete case:** $P(X = b) = p_X(b) \ge 0$. If nonzero, then $P(X \le b) \ne P(X < b)$.

Dartboard

• A dart is repeatedly thrown at a dartboard.

Shape: Circle of radius 3 centered at the origin.

 Assume all points on the board are hit with equal ("uniform") probability (and ignore the darts that miss). Data

i	X	У	r
1	1.575	1.022	1.878
2	-1.640	1.265	2.071
3	-1.625	0.607	1.734
4	-1.143	-1.947	2.257
5	-1.054	-0.822	1.337
• • •		•••	•••
999	1.747	0.850	1.943
1000	1.519	-1.429	2.086

- Hits i = 1, 2, ..., 1000.
- Coordinates (x_i, y_i) .
- Distance to center $r_i = \sqrt{x_i^2 + y_i^2}$.
- What is the distribution of r?

Histograms – Frequency Histogram

5 bins

• w = bin width = 3/5 = 0.6

• Bins (*x*-axis):

 $0 \le r < 0.6$ has $n_1=37$ points $0.6 \le r < 1.2$ has $n_2 = 126$ $1.2 \le r < 1.8$ has $n_3 = 198$ $1.8 \le r < 2.4$ has $n_4 = 275$ $2.4 \le r \le 3.0$ has $n_5 = 364$ Total $n = n_1 + \dots + n_5 = 1000$

Notation

- n = # points = 1000
- w = bin width = 3/(# bins)
- $n_j = \#$ points in bin j

- *y*-axis: Set bar height = n_j
- Area of bin *j*: width \times height = $w \cdot n_j$
- Area of histogram: $A = w(n_1 + n_2 + \cdots) = w \cdot n$

Relative frequency histogram

• **Relative frequency:** the fraction of points in bin *j* is n_j/n .

• Plot a bar of height n_j/n instead of height n_j .

• Bar *j* area =
$$w \cdot n_j/n$$

- Total area = $w \cdot (n_1 + n_2 + \cdots)/n = w \cdot n/n = w$.
- Graphs look the same, just the y-axis scale changes.

Relative freq. histogram, 5 bins

11/23

Probability density histogram

- **Probability density per unit** *x*: the fraction of points in bin *j* is n_j/n , and bin *j* has width *w*, giving density $n_j/(nw)$.
- Plot a bar of height $n_j/(nw)$
- Bar *j* area = $w \cdot n_j / (nw) = n_j / n$
- Total area = $(n_1 + n_2 + \cdots)/n = n/n = 1$.
- Graphs look the same, just the y-axis scale changes.

Prof. Tesler

Math 186 / Winter 2020 13 / 23

How many bins?

How many bins to use?

- For n = 1000 points, 5, 10, 31 bins all looked reasonable, while 1000 bins did not (too many empty or overfilled bins).
- Usually use a small fixed number of bins, much smaller than the number of points.
- In the discrete case, sometimes it's a concern to pick bin boundaries so that the points don't hit the boundaries.

Effect on *y*-axis of changing number of bins

- Frequency and relative frequency histograms: Increasing the number of bins cuts the *y*-axis proportionately.
- Probability density histogram:

Increasing the number of bins keeps the *y*-axis stable, as long as the number of bins is much smaller than the number of points.

Limit as # points and bins $\rightarrow \infty$ $n \rightarrow \infty$ and number of bins $\rightarrow \infty$ but slower (e.g., \sqrt{n} bins)

Probability density function (PDF) of a continuous random variable

• Let *X*, *Y* be random variables for the coordinates of a random point in the circle and $R = \sqrt{X^2 + Y^2}$.

• For each *r* between 0 and 3,

 $P(R \leqslant r) = \text{Area of circle of radius } r \text{ (centered at origin)}$ $\div \text{ Area of whole circle}$ $= (\pi r^2)/(\pi 3^2) = r^2/9$

Also, $P(R \leq r) = 0$ if r < 0 and $P(R \leq r) = 1$ if r > 3.

Probability density function (PDF) of a continuous random variable

• Together:

$$P(R \leqslant r) = \begin{cases} 0 & \text{if } r < 0;\\ r^2/9 & \text{if } 0 \leqslant r \leqslant 3;\\ 1 & \text{if } r \geqslant 3. \end{cases}$$

• But the area up to r in the probability density histogram is

$$P(R \leqslant r) = \int_0^r f(t) \, dt$$

so for $0 \leq r \leq 3$,

$$f(r) = \frac{d}{dr}P(R \leqslant r) = \frac{d}{dr}\frac{r^2}{9} = \frac{2r}{9}$$

• If r < 0 then $f(r) = \frac{d}{dr}0 = 0$; if r > 3 then $f(r) = \frac{d}{dr}(1) = 0$

Cumulative distribution function (cdf), continuous case

- The *Cumulative Distribution Function (cdf)* of a random variable is $F_X(x) = P(X \le x)$
- We computed that the cdf of *R* is

$$F_{R}(r) = P(R \leq r) = \begin{cases} 0 & \text{if } r < 0; \\ r^{2}/9 & \text{if } 0 \leq r \leq 3; \\ 1 & \text{if } r \geq 3. \end{cases}$$

and then we differentiated it to get the pdf

$$f_{R}(r) = \begin{cases} 2r/9 & \text{if } 0 \leqslant r < 3; \\ 0 & \text{if } r \leqslant 0 \text{ or } r > 3 \end{cases}$$

PDF vs. CDF

Probability of an interval

Compute $P(-1 \le R \le 2)$ from the PDF and also from the CDF

Computation from the PDF

$$P(-1 \leqslant R \leqslant 2) = \int_{-1}^{2} f_{R}(r) dr = \int_{-1}^{0} f_{R}(r) dr + \int_{0}^{2} f_{R}(r) dr$$
$$= \int_{-1}^{0} 0 dr + \int_{0}^{2} \frac{2r}{9} dr$$
$$= 0 + \left(\frac{r^{2}}{9}\Big|_{r=0}^{2}\right) = \frac{2^{2} - 0^{2}}{9} = \boxed{\frac{4}{9}}$$

Computation from the CDF

$$P(-1 \leqslant R \leqslant 2) = P(-1^{-} < R \leqslant 2)$$

$$2^{2}$$

$$=F_{R}(2)-F_{R}(-1^{-})=\frac{2^{2}}{9}-0=\left|\frac{4}{9}\right|$$

.

Cumulative distribution function (cdf)

For any random variable *X*, the *Cumulative Distribution Function (cdf)* is $F_{x}(x) = P(X \le x)$

Continuous case

- $F_X(x) = \int_{-\infty}^x f_X(t) dt$
- Weakly increasing.
- Varies smoothly from 0 to 1 as x varies from $-\infty$ to ∞ .
- To get the pdf from the cdf, use $f_X(x) = F_X'(x)$.

Discrete case

- $F_X(x) = \sum_{t \leq x} p_X(t)$
- Weakly increasing.
- Stair-steps from 0 to 1 as x goes from $-\infty$ to ∞ .
- The cdf jumps where $p_X(x) \neq 0$ and is constant in-between.
- To get the pdf from the cdf, use $p_X(x) = F_X(x) F_X(x^-)$ (which is positive at the jumps, 0 otherwise).

Continuous vs. discrete random variables

In a continuous distribution:

- The probability of an individual point is 0: P(R = r) = 0. So, $P(R \le r) = P(R < r)$, i.e., $F_R(r) = F_R(r^-)$.
- The CDF is continuous. (In a discrete distribution, the CDF is discontinuous due to jumps at the points with nonzero probability.)

•
$$P(a < R < b) = P(a \leq R < b) = P(a < R \leq b) = P(a \leq R \leq b)$$

= $F_R(b) - F_R(a)$

CDF, percentiles, and median

The kth percentile of a distribution X is the point x where k% of the probability is up to that point:

$$F_X(x) = P(X \le x) = k\% = k/100$$

- Dartboard: $F_R(r) = P(R \le r) = r^2/9$ (for $0 \le r \le 3$)
- $r^2/9 = (k/100) \implies r = \sqrt{9(k/100)}$
- 75th percentile: $r = \sqrt{9(.75)} \approx 2.60$
- Median (50th percentile): $r = \sqrt{9(.50)} \approx 2.12$
- 0th and 100th percentiles:
 - r = 0 and r = 3 on the range $0 \le r \le 3$.
 - Not uniquely defined if *r* ranges over all real numbers, since $F_{R}(r) = 0$ for all $r \leq 0$ and $F_{R}(r) = 1$ for all $r \geq 3$.