A continuous probability distribution: Throwing darts at a dartboard (3.4)

Prof. Tesler

Math 186
Winter 2020

Continuous distributions

Example

- Pick a real number x between 20 and 30 with all real values in [20, 30] equally likely.
- Sample space: $S=[20,30]$
- Number of outcomes: $|S|=\infty$
- Probability of each outcome: $P(X=x)=\frac{1}{\infty}=0$
- Yet, $P(X \leqslant 21.5)=15 \%$

Continuous distributions

- The sample space S is often a subset of \mathbb{R}^{n}. We'll do the 1-dimensional case $S \subset \mathbb{R}$.
- The probability density function (pdf) $f_{X}(x)$ is defined differently than the discrete case:
- $f_{X}(x)$ is a real-valued function on S with $f_{X}(x) \geqslant 0$ for all $x \in S$.
- $\int_{S} f_{X}(x) d x=1 \quad$ (vs. $\sum_{x \in S} p_{X}(x)=1$ for discrete)
- The probability of event $A \subset S$ is $P(A)=\int_{A} f_{X}(x) d x \quad$ (vs. $\sum_{x \in A} p_{X}(x)$).
- In n dimensions, use n-dimensional integrals instead.

Uniform distribution

- Let $a<b$ be real numbers.
- The Uniform Distribution on $[a, b]$ is that all numbers in $[a, b]$ are "equally likely."
- More precisely, $f_{X}(x)= \begin{cases}\frac{1}{b-a} & \text { if } a \leqslant x \leqslant b ; \\ 0 & \text { otherwise } .\end{cases}$

Uniform distribution (real case)

The uniform distribution on $[20,30]$
We could regard the sample space as [20,30], or as all reals.

$$
\begin{aligned}
& P(X \leqslant 21.5)=\int_{-\infty}^{20} 0 d x+\int_{20}^{21.5} \frac{1}{10} d x=0+\left.\frac{x}{10}\right|_{20} ^{21.5} \\
& =\frac{21.5-20}{10} \\
& =.15=15 \%
\end{aligned}
$$

Probability of a point, in the continuous case

Probability of a point

- For any continuous random variable, the probability of a point, b, is $P(X=b)=\int_{b}^{b} f_{X}(x) d x=$ area of line segment $=0$.
- The probability density $f_{X}(b)$ may be nonzero, but integrating over a single point gives probability $=0$.

$$
P(X \leqslant b)=P(X<b)+P(X=b)
$$

- Continuous case: $P(X=b)=0$, so $P(X \leqslant b)=P(X<b)$. Similarly, $P(a \leqslant X)=P(a<X)$.
- Discrete case: $P(X=b)=p_{X}(b) \geqslant 0$. If nonzero, then

$$
P(X \leqslant b) \neq P(X<b) .
$$

Dartboard

- A dart is repeatedly thrown at a dartboard.
- Shape:

Circle of radius 3 centered at the origin.

- Assume all points on the board are hit with equal ("uniform") probability (and ignore the darts that miss).

Data

i	x	y	r
1	1.575	1.022	1.878
2	-1.640	1.265	2.071
3	-1.625	0.607	1.734
4	-1.143	-1.947	2.257
5	-1.054	-0.822	1.337
\ldots	\ldots	\ldots	\ldots
999	1.747	0.850	1.943
1000	1.519	-1.429	2.086

- Hits $i=1,2, \ldots, 1000$.
- Coordinates $\left(x_{i}, y_{i}\right)$.
- Distance to center

$$
r_{i}=\sqrt{x_{i}^{2}+y_{i}^{2}} .
$$

- What is the distribution of r ?

Histograms - Frequency Histogram

Freq. histogram, 5 bins 400

5 bins

- $w=$ bin width $=3 / 5=0.6$
- Bins (x-axis):
$0 \leqslant r<0.6$ has $n_{1}=37$ points
$0.6 \leqslant r<1.2$ has $n_{2}=126$
$1.2 \leqslant r<1.8$ has $n_{3}=198$
$1.8 \leqslant r<2.4$ has $n_{4}=275$
$2.4 \leqslant r \leqslant 3.0$ has $n_{5}=364$
Total $n=n_{1}+\cdots+n_{5}=1000$

Notation

- $n=$ \# points $=1000$
- $w=$ bin width $=3 /(\#$ bins)
- $n_{j}=\#$ points in bin j
- \boldsymbol{y}-axis: Set bar height $=n_{j}$
- Area of bin j : width \times height $=w \cdot n_{j}$
- Area of histogram:

$$
A=w\left(n_{1}+n_{2}+\cdots\right)=w \cdot n
$$

Freq. histogram, 5 bins
400

$w=3 / 5, A=(3 / 5)(1000)=600$
Freq. histogram, 31 bins 80

Freq. histogram, 10 bins

$w=3 / 10, A=(3 / 10)(1000)=300$
Freq. histogram, 1000 bins

$$
w=3 / 1000, A=(3 / 1000)(1000)=3
$$

Relative frequency histogram

Freq. histogram, 5 bins

Relative freq. histogram, 5 bins

- Relative frequency: the fraction of points in bin j is n_{j} / n.
- Plot a bar of height n_{j} / n instead of height n_{j}.
- Bar j area $=w \cdot n_{j} / n$
- Total area $=w \cdot\left(n_{1}+n_{2}+\cdots\right) / n=w \cdot n / n=w$.
- Graphs look the same, just the y-axis scale changes.

Probability density histogram

Freq. histogram, 5 bins
400

- Probability density per unit x : the fraction of points in bin j is n_{j} / n, and bin j has width w, giving density $n_{j} /(n w)$.
- Plot a bar of height $n_{j} /(n w)$
- Bar j area $=w \cdot n_{j} /(n w)=n_{j} / n$
- Total area $=\left(n_{1}+n_{2}+\cdots\right) / n=n / n=1$.
- Graphs look the same, just the y-axis scale changes.

Probability density, 5 bins

$w=3 / 5, A=1$
Probability density, 31 bins

$w=3 / 31, A=1$

Probability density, 10 bins

$w=3 / 10, A=1$
Probability density, 1000 bins

$w=3 / 1000, A=1$

How many bins?

How many bins to use?

- For $n=1000$ points, $5,10,31$ bins all looked reasonable, while 1000 bins did not (too many empty or overfilled bins).
- Usually use a small fixed number of bins, much smaller than the number of points.
- In the discrete case, sometimes it's a concern to pick bin boundaries so that the points don't hit the boundaries.

Effect on y-axis of changing number of bins

- Frequency and relative frequency histograms: Increasing the number of bins cuts the y-axis proportionately.
- Probability density histogram:

Increasing the number of bins keeps the y-axis stable, as long as the number of bins is much smaller than the number of points.

Limit as \# points and bins $\rightarrow \infty$

 $n \rightarrow \infty$ and number of bins $\rightarrow \infty$ but slower (e.g., \sqrt{n} bins)Probability density, 5 bins

Probability density, 31 bins

Probability density, 10 bins

Probability density function (PDF) of a continuous random variable

- Let X, Y be random variables for the coordinates of a random point in the circle and $R=\sqrt{X^{2}+Y^{2}}$.

- For each r between 0 and 3 ,

$$
\begin{aligned}
P(R \leqslant r)= & \text { Area of circle of radius } r \text { (centered at origin) } \\
& \div \text { Area of whole circle } \\
= & \left(\pi r^{2}\right) /\left(\pi 3^{2}\right)=r^{2} / 9
\end{aligned}
$$

Also, $P(R \leqslant r)=0$ if $r<0 \quad$ and $\quad P(R \leqslant r)=1$ if $r>3$.

Probability density function (PDF) of a continuous random variable

- Together:

$$
P(R \leqslant r)= \begin{cases}0 & \text { if } r<0 \\ r^{2} / 9 & \text { if } 0 \leqslant r \leqslant 3 \\ 1 & \text { if } r \geqslant 3\end{cases}
$$

- But the area up to r in the probability density histogram is

$$
P(R \leqslant r)=\int_{0}^{r} f(t) d t
$$

so for $0 \leqslant r \leqslant 3$,

$$
f(r)=\frac{d}{d r} P(R \leqslant r)=\frac{d}{d r} \frac{r^{2}}{9}=\frac{2 r}{9}
$$

- If $r<0$ then $f(r)=\frac{d}{d r} 0=0 ;$ if $r>3$ then $f(r)=\frac{d}{d r}(1)=0$

Cumulative distribution function (cdf), continuous case

- The Cumulative Distribution Function (cdf) of a random variable is

$$
F_{X}(x)=P(X \leqslant x)
$$

- We computed that the cdf of R is

$$
F_{R}(r)=P(R \leqslant r)= \begin{cases}0 & \text { if } r<0 \\ r^{2} / 9 & \text { if } 0 \leqslant r \leqslant 3 \\ 1 & \text { if } r \geqslant 3\end{cases}
$$

and then we differentiated it to get the pdf

$$
f_{R}(r)= \begin{cases}2 r / 9 & \text { if } 0 \leqslant r<3 \\ 0 & \text { if } r \leqslant 0 \text { or } r>3\end{cases}
$$

PDF vs. CDF

Cumulative distribution function

- CDF is integral of PDF:

$$
F_{R}(r)=\int_{-\infty}^{r} f_{R}(t) d t
$$

Probability of an interval

Compute $P(-1 \leqslant R \leqslant 2)$ from the PDF and also from the CDF

Computation from the PDF

$$
\begin{aligned}
P(-1 \leqslant R \leqslant 2) & =\int_{-1}^{2} f_{R}(r) d r=\int_{-1}^{0} f_{R}(r) d r+\int_{0}^{2} f_{R}(r) d r \\
& =\int_{-1}^{0} 0 d r+\int_{0}^{2} \frac{2 r}{9} d r \\
& =0+\left(\left.\frac{r^{2}}{9}\right|_{r=0} ^{2}\right)=\frac{2^{2}-0^{2}}{9}=\frac{\mathbf{4}}{\mathbf{9}}
\end{aligned}
$$

Computation from the CDF

$$
\begin{aligned}
P(-1 \leqslant R \leqslant 2) & =P\left(-1^{-}<R \leqslant 2\right) \\
& =F_{R}(2)-F_{R}\left(-1^{-}\right)=\frac{2^{2}}{9}-0=\frac{\mathbf{4}}{\mathbf{9}}
\end{aligned}
$$

Cumulative distribution function (cdf)

For any random variable X, the Cumulative Distribution Function (cdf) is $\quad F_{X}(x)=P(X \leqslant x)$

Continuous case

- $F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t$
- Weakly increasing.
- Varies smoothly from 0 to 1 as x varies from $-\infty$ to ∞.
- To get the pdf from the cdf, use $f_{X}(x)=F_{X}{ }^{\prime}(x)$.

Discrete case

- $F_{X}(x)=\sum_{t \leqslant x} p_{X}(t)$
- Weakly increasing.
- Stair-steps from 0 to 1 as x goes from $-\infty$ to ∞.
- The cdf jumps where $p_{X}(x) \neq 0$ and is constant in-between.
- To get the pdf from the cdf, use $p_{X}(x)=F_{X}(x)-F_{X}\left(x^{-}\right)$ (which is positive at the jumps, 0 otherwise).

Continuous vs. discrete random variables

Cumulative distribution function

Cumulative distribution function

In a continuous distribution:

- The probability of an individual point is $0: P(R=r)=0$.

So, $P(R \leqslant r)=P(R<r)$, i.e., $F_{R}(r)=F_{R}\left(r^{-}\right)$.

- The CDF is continuous.
(In a discrete distribution, the CDF is discontinuous due to jumps at the points with nonzero probability.)
- $P(a<R<b)=P(a \leqslant R<b)=P(a<R \leqslant b)=P(a \leqslant R \leqslant b)$

$$
=F_{R}(b)-F_{R}(a)
$$

CDF, percentiles, and median

- The $k^{\text {th }}$ percentile of a distribution X is the point x where $k \%$ of the probability is up to that point:

$$
F_{X}(x)=P(X \leqslant x)=k \%=k / 100
$$

- Dartboard: $F_{R}(r)=P(R \leqslant r)=r^{2} / 9 \quad$ (for $0 \leqslant r \leqslant 3$)
- $r^{2} / 9=(k / 100) \Rightarrow r=\sqrt{9(k / 100)}$
- $75^{\text {th }}$ percentile: $r=\sqrt{9(.75)} \approx 2.60$
- Median ($50^{\text {th }}$ percentile): $r=\sqrt{9(.50)} \approx 2.12$
- $0^{\text {th }}$ and $100^{\text {th }}$ percentiles:
- $r=0$ and $r=3$ on the range $0 \leqslant r \leqslant 3$.
- Not uniquely defined if r ranges over all real numbers, since

$$
F_{R}(r)=0 \text { for all } r \leqslant 0 \quad \text { and } \quad F_{R}(r)=1 \text { for all } r \geqslant 3 .
$$

