3.5-3.6 Expected values and variance

Prof. Tesler

Math 186
Winter 2019

Expected Winnings in a Game

Setup

- A simple game:
(1) Pay $\$ 1$ to play once.
(2) Flip two fair coins.
(3) Win $\$ 5$ if HH , nothing otherwise.
- The payoff is $X= \begin{cases}\$ 5 & \text { with probability } 1 / 4 ; \\ \$ 0 & \text { with probability } 3 / 4\end{cases}$
- The net winnings are
$Y=X-1= \begin{cases}\$ 5-\$ 1=\$ 4 & \text { with probability } 1 / 4 ; \\ \$ 0-\$ 1=-\$ 1 & \text { with probability } 3 / 4\end{cases}$
- Playing the game once is called a trial.
- Playing the game n times is an experiment with n trials.

Expected Winnings in a Game

Average payoff

- If you play the game n times, the payoff will be $\$ 5$ about $n / 4$ times and $\$ 0$ about $3 n / 4$ times, totalling

$$
\$ 5 \cdot n / 4+\$ 0 \cdot 3 n / 4=\$ 5 n / 4
$$

- The expected payoff (long term average payoff) per game is obtained by dividing by n :

$$
E(X)=\$ 5 \cdot 1 / 4+\$ 0 \cdot 3 / 4=\$ 1.25
$$

- For the expected winnings (long term average winnings), subtract off the bet:

$$
E(Y)=E(X-1)=\$ 4 \cdot 1 / 4-\$ 1 \cdot 3 / 4=\$ 0.25
$$

- That's good for you and bad for the house.
- A fair game has expected winnings = \$0.

A game favors the player if the expected winnings are positive. A game favors the house if the expected winnings are negative.

Expected Value of a Random Variable

 (Technical name for long term average)- The expected value of a discrete random variable X is

$$
E(X)=\sum_{x} x \cdot p_{X}(x)
$$

- The expected value of a continuous random variable X is

$$
E(X)=\int_{-\infty}^{\infty} x \cdot f_{X}(x) d x
$$

- $E(X)$ is often called the mean value of X and is denoted μ (or μ_{X} if there is more than one random variable in the problem).
- μ doesn't have to be a value in the range of X. The previous example had range $X=\$ 0$ or $\$ 5$, and mean $\$ 1.25$.

Expected Value of Binomial Distribution

- Consider a biased coin with probability $p=3 / 4$ for heads.
- Flip it 10 times and record the number of heads, x_{1}.

Flip it another 10 times, get x_{2} heads.
Repeat to get x_{1}, \cdots, x_{1000}.

- Estimate the average of $\boldsymbol{x}_{\mathbf{1}}, \ldots, \boldsymbol{x}_{\mathbf{1 0 0 0}}: 10(3 / 4)=7.5$ (Later we'll show $E(X)=n p$ for the binomial distribution.)
- An estimate based on the pdf: About $1000 p_{X}(k)$ of the x_{i} 's equal k for each $k=0, \ldots, 10$, so

$$
\text { average of } x_{i} \mathrm{~S}=\frac{\sum_{i=1}^{1000} x_{i}}{1000} \approx \frac{\sum_{k=0}^{10} k \cdot 1000 p_{X}(k)}{1000}=\sum_{k=0}^{10} k \cdot p_{X}(k)
$$

which is the formula for $E(X)$ in this case.

Interpretation of the word "Expected"

- Although $E(X)=7.5$, this is not a possible value for X.
- Expected value does not mean we anticipate observing that value.
- It means the long term average of many independent measurements of X will be approximately $E(X)$.

Function of a Random Variable

- Let X be the value of a roll of a biased die and $Z=(X-3)^{2}$.

x	$p_{X}(x)$	$z=(x-3)^{2}$	$p_{Z}(z)$
1	q_{1}	4	
2	q_{2}	1	
3	q_{3}	0	$p_{Z}(0)=q_{3}$
4	q_{4}	1	$p_{Z}(1)=q_{2}+q_{4}$
5	q_{5}	4	$p_{Z}(4)=q_{1}+q_{5}$
6	q_{6}	9	$p_{Z}(9)=q_{6}$

- pdf of X : Each $q_{i} \geqslant 0$ and $q_{1}+\cdots+q_{6}=1$.
- pdf of Z : Each probability is also $\geqslant 0$, and the total sum is also 1 .

Expected Value of a Function

- Let X be the value of a roll of a biased die and $Z=(X-3)^{2}$.

x	$p_{X}(x)$	$z=(x-3)^{2}$	$p_{Z}(z)$
1	q_{1}	4	
2	q_{2}	1	
3	q_{3}	0	$p_{Z}(0)=q_{3}$
4	q_{4}	1	$p_{Z}(1)=q_{2}+q_{4}$
5	q_{5}	4	$p_{Z}(4)=q_{1}+q_{5}$
6	q_{6}	9	$p_{Z}(9)=q_{6}$

- $E(Z)$, in terms of values of Z and the pdf of Z, is

$$
E(Z)=\sum_{z} z \cdot p_{Z}(z)=0\left(q_{3}\right)+1\left(q_{2}+q_{4}\right)+4\left(q_{1}+q_{5}\right)+9\left(q_{6}\right)
$$

- Regroup it in terms of X :

$$
=4 q_{1}+1 q_{2}+0 q_{3}+1 q_{4}+4 q_{5}+9 q_{6}=\sum_{x=1}^{6}(x-3)^{2} p_{X}(x)
$$

Expected Value of a Function

- Let X be a discrete random variable, and $g(X)$ be a function, such as $(X-3)^{2}$.
- The expected value of $g(X)$ is

$$
E(g(X))=\sum_{x} g(x) p_{X}(x)
$$

- For a continuous random variable,

$$
E(g(X))=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x
$$

- Note that if $Z=g(X)$ then $E(Z)=E(g(X))$.

Expected Value of a Continuous distribution

- Consider the dartboard of radius 3 example, with pdf

$$
f_{R}(r)= \begin{cases}2 r / 9 & \text { if } 0 \leqslant r \leqslant 3 \\ 0 & \text { otherwise }\end{cases}
$$

- Throw n darts and make a histogram with k bins.
- r_{1}, r_{2}, \ldots are representative values of R in each bin.
- The bin width is $\Delta r=3 / k$, the height is $\approx f_{R}\left(r_{i}\right)$, and the area is $\approx f_{R}\left(r_{i}\right) \Delta r$.
- The approximate number of darts in bin i is $n f_{R}\left(r_{i}\right) \Delta r$.

Expected Value of a Continuous Distribution

- The estimated average radius is

$$
\frac{\sum_{i} r_{i} \cdot n f_{R}\left(r_{i}\right) \Delta r}{n}=\sum_{i} r_{i} \cdot f_{R}\left(r_{i}\right) \Delta r
$$

- As $n, k \rightarrow \infty$, the histogram smoothes out and this becomes

$$
\int_{0}^{3} r \cdot f_{R}(r) d r
$$

Mean of a continuous distribution

- Consider the dartboard of radius 3 example, with pdf

$$
f_{R}(r)= \begin{cases}2 r / 9 & \text { if } 0 \leqslant r \leqslant 3 \\ 0 & \text { otherwise }\end{cases}
$$

- The "average radius" (technically the mean radius or expected value of R) is

$$
\begin{aligned}
\mu=E(R) & =\int_{-\infty}^{\infty} r \cdot f_{R}(r) d r=\int_{0}^{3} r \cdot \frac{2 r}{9} d r=\int_{0}^{3} \frac{2 r^{2}}{9} d r \\
& =\left.\frac{2 r^{3}}{27}\right|_{0} ^{3}=\frac{2\left(3^{3}-0^{3}\right)}{27}=2
\end{aligned}
$$

Expected Values - Properties

- The gambling slide earlier had $E(X-1)=E(X)-1$.

Theorem

$E(a X+b)=a E(X)+b \quad$ where a, b are constants.

Proof (discrete case).

$$
\begin{aligned}
E(a X+b) & =\sum_{x}(a x+b) \cdot p_{X}(x) \\
& =a \sum_{x} x \cdot p_{X}(x)+b \sum_{x} p_{X}(x) \\
& =a \cdot E(X)+b \cdot 1=a E(X)+b
\end{aligned}
$$

Expected Values - Properties

- The gambling slide earlier had $E(X-1)=E(X)-1$.

Theorem

$E(a X+b)=a E(X)+b \quad$ where a, b are constants.

Proof (continuous case).

$$
\begin{aligned}
E(a X+b) & =\int_{-\infty}^{\infty}(a x+b) \cdot f_{X}(x) d x \\
& =a \int_{-\infty}^{\infty} x \cdot f_{X}(x) d x+b \int_{-\infty}^{\infty} f_{X}(x) d x \\
& =a \cdot E(X)+b \cdot 1=a E(X)+b
\end{aligned}
$$

Expected Values - Properties

These properties hold for both discrete and continuous random variables:

- $E(a X+b)=a E(X)+b \quad$ for any constants a, b.
- $E(a X)=a E(X)$
- $E(b)=b$
- $E(g(X)+h(X))=E(g(X))+E(h(X))$

Variance

- These distributions both have mean=0, but the right one is more spread out.

- The variance of X measures the square of the spread from the mean:

$$
\sigma^{2}=\operatorname{Var}(X)=E\left((X-\mu)^{2}\right)
$$

- The standard deviation of X is $\sigma=\sqrt{\operatorname{Var}(X)}$ and measures how wide the curve is.

Variance

- The same definition $\operatorname{Var}(X)=E\left((X-\mu)^{2}\right)$ is used for both the discrete and continuous cases, but expected value is computed differently in the two cases.
- Why don't we use $E(X-\mu)$ or $E(|X-\mu|)$ to measure the spread?
- $E(X-\mu)=E(X)-\mu=\mu-\mu=0$, so it doesn't measure the spread.
- Both $|X-\mu|$ and $(X-\mu)^{2}$ are nonnegative. We will see that $E\left((X-\mu)^{2}\right)$ leads to useful properties. It turns out that $E(|X-\mu|)$ does not have nice properties.

Variance formula $\sigma^{2}=E\left((X-\mu)^{2}\right)$

- Consider the dartboard of radius 3 example, with pdf

$$
f_{R}(r)= \begin{cases}2 r / 9 & \text { if } 0 \leqslant r \leqslant 3 ; \\ 0 & \text { otherwise } .\end{cases}
$$

- $\mu=2$ from earlier slide.
- $\sigma^{2}=\operatorname{Var}(R)=E\left((R-\mu)^{2}\right)=E\left((R-2)^{2}\right)$

$$
\begin{aligned}
& =\int_{-\infty}^{\infty}(r-2)^{2} f_{R}(r) d r=\int_{0}^{3} \frac{(r-2)^{2} \cdot 2 r}{9} d r \\
& =\int_{0}^{3} \frac{2 r^{3}-8 r^{2}+8 r}{9} d r=\left.\left(\frac{r^{4}}{18}-\frac{8 r^{3}}{27}+\frac{4 r^{2}}{9}\right)\right|_{0} ^{3} \\
& =\left(\frac{3^{4}}{18}-\frac{8\left(3^{3}\right)}{27}+\frac{4\left(3^{2}\right)}{9}\right)-0=\frac{1}{2}
\end{aligned}
$$

- Variance: $\sigma^{2}=\frac{1}{2} \quad$ Standard deviation: $\sigma=\sqrt{1 / 2}$

Variance - Second formula

There are two equivalent formulas to compute variance. In any problem, choose the easier one:

$$
\begin{aligned}
\sigma^{2}=\operatorname{Var}(X) & =E\left((X-\mu)^{2}\right) \quad \text { (Definition) } \\
& =E\left(X^{2}\right)-\mu^{2} \quad \text { (Sometimes easier to compute) }
\end{aligned}
$$

Proof.

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left((X-\mu)^{2}\right) \\
& =E\left(X^{2}-2 \mu X+\mu^{2}\right) \\
& =E\left(X^{2}\right)-2 \mu E(X)+\mu^{2} \\
& =E\left(X^{2}\right)-2 \mu^{2}+\mu^{2} \\
& =E\left(X^{2}\right)-\mu^{2}
\end{aligned}
$$

Variance formula $\sigma^{2}=E\left(R^{2}\right)-\mu^{2}$

- Consider the dartboard of radius 3 example, with pdf

$$
f_{R}(r)= \begin{cases}2 r / 9 & \text { if } 0 \leqslant r \leqslant 3 \\ 0 & \text { otherwise }\end{cases}
$$

- $\mu=E(R)=2$
- $E\left(R^{2}\right)=\int_{0}^{3} r^{2} \cdot \frac{2 r}{9} d r=\int_{0}^{3} \frac{2 r^{3}}{9} d r=\left.\frac{2 r^{4}}{36}\right|_{0} ^{3}=\frac{2(81-0)}{36}=9 / 2$
- Variance: $\sigma^{2}=E\left(R^{2}\right)-\mu^{2}=\frac{9}{2}-2^{2}=\frac{1}{2}$

Standard deviation: $\sigma=\sqrt{1 / 2}$

Variance — Properties

- $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$

- Adding b shifts the curve without changing the width, so b disappears on the right side of the formula.
- Multiplying by a dilates the width a factor of a, so variance goes up a factor a^{2}.
- For $Y=a X+b$, we have $\sigma_{Y}=|a| \sigma_{X}$.
- Example: Convert measurements in ${ }^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$:

$$
F=(9 / 5) C+32 \quad \mu_{F}=(9 / 5) \mu_{C}+32 \quad \sigma_{F}=(9 / 5) \sigma_{C}
$$

Variance - Properties

- $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$

Proof of $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$.

$$
\begin{aligned}
E\left((a X+b)^{2}\right)=E\left(a^{2} X^{2}+2 a b X+b^{2}\right) & =a^{2} E\left(X^{2}\right)+2 a b E(X)+b^{2} \\
(E(a X+b))^{2}=\quad(a E(X)+b)^{2} & =a^{2}(E(X))^{2}+2 a b E(X)+b^{2} \\
\operatorname{Var}(a X+b)=\quad \text { difference } & =a^{2}\left(E\left(X^{2}\right)-(E(X))^{2}\right) \\
& =a^{2} \operatorname{Var}(X)
\end{aligned}
$$

Mean and Variance of the Binomial Distribution

- For the binomial distribution,

Mean: $\mu=n p$
Standard deviation:

$$
\sigma=\sqrt{n p(1-p)}
$$

- At $n=100$ and $p=3 / 4$:

$$
\begin{aligned}
\mu & =100(3 / 4)=75 \\
\sigma & =\sqrt{100(3 / 4)(1 / 4)} \approx 4.33
\end{aligned}
$$

Binomial distribution

- Approximately 68% of the probability is for X between $\mu \pm \sigma$. Approximately 95% of the probability is for X between $\mu \pm 2 \sigma$. More on that in Chapter 4.

Mean of the Binomial Distribution

Proof that $\mu=n p$ for binomial distribution.

$$
\begin{aligned}
E(X) & =\sum_{k} k \cdot p_{X}(k) \\
& =\sum_{k=0}^{n} k \cdot\binom{n}{k} p^{k} q^{n-k}
\end{aligned}
$$

Calculus Trick:

$$
(p+q)^{n}=\sum_{k=0}^{n}\binom{n}{k} p^{k} q^{n-k}
$$

Differentiate:

$$
\frac{\partial}{\partial p}(p+q)^{n}=\sum_{k=0}^{n} k\binom{n}{k} p^{k-1} q^{n-k}
$$

Times p :

$$
p \frac{\partial}{\partial p}(p+q)^{n}=\sum_{k=0}^{n} k\binom{n}{k} p^{k} q^{n-k}=E(X)
$$

Evaluate left side: $p \frac{\partial}{\partial p}(p+q)^{n}=p \cdot n(p+q)^{n-1}$

$$
=p \cdot n \cdot 1^{n-1}=n p \quad \text { since } p+q=1 .
$$

So $E(X)=n p$.
We'll do $\sigma=\sqrt{n p(1-p)}$ later.

