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Expected Winnings in a Game
Setup

A simple game:
1 Pay $1 to play once.
2 Flip two fair coins.
3 Win $5 if HH, nothing otherwise.

The payoff is X =

{
$5 with probability 1/4;
$0 with probability 3/4.

The net winnings are

Y = X − 1 =

{
$5 − $1 = $4 with probability 1/4;
$0 − $1 = −$1 with probability 3/4.

Playing the game once is called a trial.
Playing the game n times is an experiment with n trials.
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Expected Winnings in a Game
Average payoff

If you play the game n times, the payoff will be $5 about n/4 times
and $0 about 3n/4 times, totalling

$5 · n/4 + $0 · 3n/4 = $5n/4

The expected payoff (long term average payoff) per game is
obtained by dividing by n:

E(X) = $5 · 1/4 + $0 · 3/4 = $1.25

For the expected winnings (long term average winnings), subtract
off the bet:

E(Y) = E(X − 1) = $4 · 1/4 − $1 · 3/4 = $0.25

That’s good for you and bad for the house.
A fair game has expected winnings = $0.
A game favors the player if the expected winnings are positive.
A game favors the house if the expected winnings are negative.
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Expected Value of a Random Variable
(Technical name for long term average)

The expected value of a discrete random variable X is

E(X) =
∑

x

x · pX(x)

The expected value of a continuous random variable X is

E(X) =
∫∞
−∞ x · fX(x) dx

E(X) is often called the mean value of X and is denoted µ
(or µX if there is more than one random variable in the problem).
µ doesn’t have to be a value in the range of X. The previous
example had range X = $0 or $5, and mean $1.25.
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Expected Value of Binomial Distribution

Consider a biased coin with probability p = 3/4 for heads.

Flip it 10 times and record the number of heads, x1.
Flip it another 10 times, get x2 heads.
Repeat to get x1, · · · , x1000.

Estimate the average of x1, . . . , x1000: 10(3/4) = 7.5
(Later we’ll show E(X) = np for the binomial distribution.)

An estimate based on the pdf:
About 1000pX(k) of the xi’s equal k for each k = 0, . . . , 10, so

average of xi’s =

1000∑
i=1

xi

1000
≈

10∑
k=0

k · 1000 pX(k)

1000
=

10∑
k=0

k · pX(k)

which is the formula for E(X) in this case.
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Interpretation of the word “Expected”

Although E(X) = 7.5, this is not a possible value for X.
Expected value does not mean we anticipate observing that value.
It means the long term average of many independent
measurements of X will be approximately E(X).
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Function of a Random Variable

Let X be the value of a roll of a biased die and Z = (X − 3)2.

x pX(x) z = (x − 3)2 pZ(z)

1 q1 4
2 q2 1
3 q3 0 pZ(0) = q3

4 q4 1 pZ(1) = q2 + q4

5 q5 4 pZ(4) = q1 + q5

6 q6 9 pZ(9) = q6

pdf of X: Each qi > 0 and q1 + · · ·+ q6 = 1.
pdf of Z: Each probability is also > 0, and the total sum is also 1.
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Expected Value of a Function

Let X be the value of a roll of a biased die and Z = (X − 3)2.

x pX(x) z = (x − 3)2 pZ(z)

1 q1 4
2 q2 1
3 q3 0 pZ(0) = q3

4 q4 1 pZ(1) = q2 + q4

5 q5 4 pZ(4) = q1 + q5

6 q6 9 pZ(9) = q6

E(Z), in terms of values of Z and the pdf of Z, is

E(Z) =
∑

z

z · pZ(z) = 0(q3) + 1(q2 + q4) + 4(q1 + q5) + 9(q6)

Regroup it in terms of X:

= 4q1 + 1q2 + 0q3 + 1q4 + 4q5 + 9q6 =

6∑
x=1

(x − 3)2pX(x)
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Expected Value of a Function

Let X be a discrete random variable, and
g(X) be a function, such as (X − 3)2.
The expected value of g(X) is

E(g(X)) =
∑

x

g(x) pX(x)

For a continuous random variable,

E(g(X)) =
∫∞
−∞ g(x) fX(x) dx

Note that if Z = g(X) then E(Z) = E(g(X)).
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Expected Value of a Continuous distribution
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Consider the dartboard of
radius 3 example, with pdf

fR(r) =

{
2r/9 if 0 6 r 6 3;
0 otherwise.

Throw n darts and make a
histogram with k bins.
r1, r2, . . . are representative
values of R in each bin.
The bin width is ∆r = 3/k,
the height is ≈ fR(ri),
and the area is ≈ fR(ri)∆r.
The approximate number of
darts in bin i is n fR(ri)∆r.
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Expected Value of a Continuous Distribution

The estimated average radius is∑
i ri · n fR(ri)∆r

n
=
∑

i

ri · fR(ri)∆r

As n, k→∞, the histogram smoothes out and this becomes∫ 3

0
r · fR(r) dr
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Mean of a continuous distribution

Consider the dartboard of radius 3 example, with pdf

fR(r) =

{
2r/9 if 0 6 r 6 3;
0 otherwise.

The “average radius” (technically the mean radius or expected
value of R) is

µ = E(R) =

∫∞
−∞ r · fR(r) dr =

∫ 3

0
r · 2r

9
dr =

∫ 3

0

2r2

9
dr

=
2r3

27

∣∣∣∣3
0
=

2(33 − 03)

27
= 2
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Expected Values — Properties

The gambling slide earlier had E(X − 1) = E(X) − 1.

Theorem
E(aX + b) = aE(X) + b where a, b are constants.

Proof (discrete case).

E(aX + b) =
∑

x

(ax + b) · pX(x)

= a
∑

x

x · pX(x) + b
∑

x

pX(x)

= a · E(X) + b · 1 = aE(X) + b

�
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Expected Values — Properties

The gambling slide earlier had E(X − 1) = E(X) − 1.

Theorem
E(aX + b) = aE(X) + b where a, b are constants.

Proof (continuous case).

E(aX + b) =

∫∞
−∞(ax + b) · fX(x) dx

= a
∫∞
−∞ x · fX(x) dx + b

∫∞
−∞ fX(x) dx

= a · E(X) + b · 1 = aE(X) + b

�
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Expected Values — Properties

These properties hold for both discrete and continuous random
variables:

E(aX + b) = a E(X) + b for any constants a, b.
E(aX) = a E(X)

E(b) = b

E
(

g(X) + h(X)
)
= E(g(X)) + E(h(X))
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Variance

These distributions both have mean=0, but the right one is more
spread out.
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The variance of X measures the square of the spread from the
mean:

σ2 = Var(X) = E
(
(X − µ)2)

The standard deviation of X is σ =
√

Var(X) and measures how
wide the curve is.
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Variance

The same definition Var(X) = E
(
(X − µ)2

)
is used for both the

discrete and continuous cases, but expected value is computed
differently in the two cases.

Why don’t we use E(X − µ) or E
(
|X − µ|

)
to measure the spread?

E(X − µ) = E(X) − µ = µ− µ = 0, so it doesn’t measure the spread.

Both |X − µ| and (X − µ)2 are nonnegative.
We will see that E

(
(X − µ)2

)
leads to useful properties.

It turns out that E
(
|X − µ|

)
does not have nice properties.
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Variance formula σ2 = E
(
(X − µ)2

)
Consider the dartboard of radius 3 example, with pdf

fR(r) =

{
2r/9 if 0 6 r 6 3;
0 otherwise.

µ = 2 from earlier slide.

σ2 = Var(R) = E
(
(R − µ)2

)
= E

(
(R − 2)2

)
=

∫∞
−∞(r − 2)2fR(r) dr =

∫ 3

0

(r − 2)2 · 2r
9

dr

=

∫ 3

0

2r3 − 8r2 + 8r
9

dr =

(
r4

18
−

8r3

27
+

4r2

9

)∣∣∣∣3
0

=

(
34

18
−

8(33)

27
+

4(32)

9

)
− 0 =

1
2

Variance: σ2 = 1
2 Standard deviation: σ =

√
1/2
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Variance — Second formula

There are two equivalent formulas to compute variance.
In any problem, choose the easier one:

σ2 = Var(X) = E
(
(X − µ)2) (Definition)

= E(X2) − µ2 (Sometimes easier to compute)

Proof.

Var(X) = E
(
(X − µ)2)

= E(X2 − 2µX + µ2)

= E(X2) − 2µE(X) + µ2

= E(X2) − 2µ2 + µ2

= E(X2) − µ2

�
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Variance formula σ2 = E(R2) − µ2

Consider the dartboard of radius 3 example, with pdf

fR(r) =

{
2r/9 if 0 6 r 6 3;
0 otherwise.

µ = E(R) = 2

E(R2) =

∫ 3

0
r2 · 2r

9
dr =

∫ 3

0

2r3

9
dr =

2r4

36

∣∣∣∣3
0
=

2(81 − 0)
36

= 9/2

Variance: σ2 = E(R2) − µ2 = 9
2 − 22 = 1

2

Standard deviation: σ =
√

1/2
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Variance — Properties

Var(aX + b) = a2 Var(X)
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Adding b shifts the curve without changing the width,
so b disappears on the right side of the formula.
Multiplying by a dilates the width a factor of a,
so variance goes up a factor a2.
For Y = aX + b, we have σY = |a|σX.
Example: Convert measurements in ◦C to ◦F:
F = (9/5)C + 32 µF = (9/5)µC + 32 σF = (9/5)σC
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Variance — Properties

Var(aX + b) = a2 Var(X)
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Proof of Var(aX + b) = a2 Var(X).

E((aX + b)2) = E(a2X2 + 2ab X + b2) = a2E(X2) + 2ab E(X) + b2

(E(aX + b))2 = (aE(X) + b)2 = a2(E(X))2 + 2ab E(X) + b2

Var(aX + b) = difference = a2
(

E(X2) − (E(X))2
)

= a2 Var(X) �
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Mean and Variance of the Binomial Distribution

For the binomial distribution,

Mean: µ = np

Standard deviation:
σ =

√
np(1 − p)

At n = 100 and p = 3/4:

µ = 100(3/4) = 75
σ =

√
100(3/4)(1/4) ≈ 4.33 0 20 40 60 80 100
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Binomial: n=100, p=0.75

Approximately 68% of the probability is for X between µ± σ.
Approximately 95% of the probability is for X between µ± 2σ.
More on that in Chapter 4.
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Mean of the Binomial Distribution

Proof that µ = np for binomial distribution.

E(X)=
∑

k k · pX(k)
=
∑n

k=0 k ·
(n

k

)
pkqn−k

Calculus Trick: (p + q)n =
∑n

k=0
(n

k

)
pkqn−k

Differentiate: ∂
∂p(p + q)n =

∑n
k=0 k

(n
k

)
pk−1qn−k

Times p: p ∂
∂p(p + q)n =

∑n
k=0 k

(n
k

)
pkqn−k = E(X)

Evaluate left side: p ∂
∂p(p + q)n = p · n(p + q)n−1

= p · n · 1n−1 = np since p + q = 1.

So E(X) = np. �

We’ll do σ =
√

np(1 − p) later.
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