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Course overview

Probability: Determine likelihood of events
Roll a die. The probability of rolling 1 is 1/6.

Descriptive statistics: Summarize data
Mean, median, standard deviation, . . .

Inferential statistics: Infer a conclusion/prediction from data
Test a drug to see if it is safe and effective, and at what dose.
Poll to predict the outcome of an election.
Repeatedly flip a coin or roll a die to determine if it is fair.

Bioinformatics
We’ll apply these to biological data, such as DNA sequences and
microarrays.
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Related courses

Math 183: Usually uses the same textbook and chapters as Math
186. Focuses on the examples in the book. The mathematical
content is the same, but Math 186 has extra material for
bioinformatics.

Math 180ABC plus 181ABC: More in-depth: a year of probability
and a year of statistics.

CSE 103, Econ 120A, ECE 109: One quarter intro to probability
and statistics, specialized for other areas.

Math 283: Graduate version of this course. Review of basic
probability and statistics, with a lot more applications in
bioinformatics.
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2.2 Sample spaces

Flip a coin 3 times. The possible outcomes are

HHH HHT HTH HTT THH THT TTH TTT

The sample space is the set of all possible outcomes:

S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

The size of the sample space is
N(S) = 8 Our book’s notation
|S| = 8 A more common notation in other books

We could count this by making a 2× 2× 2 table:
2 choices for the first flip
× 2 choices for the second flip
× 2 choices for the third flip

= 23 = 8
The number of strings x1 x2 . . . xk or sequences (x1, x2, . . . , xk) of
length k with r choices for each entry is rk.
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Rolling two dice
Roll two six-sided dice, one red, one green:

green
1 2 3 4 5 6

red 1 (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
2 (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
3 (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
4 (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
5 (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
6 (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

The sample space is

S = {(1, 1), (1, 2), . . . , (6, 6)}

=
{
(i, j) ∈ Z2 : 1 6 i 6 6, 1 6 j 6 6

}
where Z = integers Z2 = ordered pairs of integers

N(S) = 62 = 36
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DNA sequences

A codon is a DNA sequence of length 3, in the alphabet of
nucleotides { A, C, G, T }:

S = { AAA, AAC, AAG, AAT, . . . , TTT }

How many codons are there?

N(S) = 43 = 64
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A continuous sample space

Consider this disk (filled-in circle):
y 3

3

−3

−3

x

C
2

S =
{
(x, y) ∈ R2 : x2 + y2 6 22 }

Complications
The sample space is infinite and continuous.
The choices of x and y are dependent. E.g.:

at x = 0, we have −2 6 y 6 2;
at x = 2, we have y = 0.
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Events

Flip a coin 3 times. The sample space is
S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

An event is a subset of the sample space (A ⊂ S):
A = “First flip is heads” = {HHH, HHT, HTH, HTT}
B = “Two flips are heads” = {HHT, HTH, THH}

C = “Four flips are heads” = ∅ (empty set or null set)

We can combine these using set operations. For example,
“The first flip is heads or two flips are heads”

A = { HHH, HHT, HTH, HTT }

B = { HHT, HTH, THH }

A ∪ B = { HHH, HHT, HTH, HTT, THH }
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Using set operations to form new events
A = “First flip is heads”
= {HHH, HHT, HTH, HTT}

B = “Two flips are heads”
= {HHT, HTH, THH} TTH

THT

A B

TTT

HHH
HTT

HHT
HTH THH

Union: All elements that are in A or in B
A ∪ B = {HHH, HHT, HTH, HTT, THH}

“A or B”: “The first flip is heads or two flips are heads”
This is inclusive or : one or both conditions are true.

Intersection: All elements that are in both A and in B
A ∩ B = {HHT, HTH}

“A and B”: “The first flip is heads and two flips are heads”

Complement: All elements of the sample space not in A
Ac = {THT, TTH, TTT, THH}

“Not A”: “The first flip is not heads”
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Venn diagram and set sizes

A = {HHH, HHT, HTH, HTT}

B = {HHT, HTH, THH}

A ∪ B = {HHH, HHT, HTH, HTT, THH}

A ∩ B = {HHT, HTH}
TTH
THT

A B

TTT

HHH
HTT

HHT
HTH THH

Relation between sizes of union and intersection
Notice that N(A ∪ B) = N(A) + N(B) − N(A ∩ B)

5 = 4 + 3 − 2
N(A) + N(B) counts everything in the union, but elements in the
intersection are counted twice. Subtract N(A ∩ B) to compensate.

Size of complement
N(Bc) = N(S) − N(B)

5 = 8 − 3
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Algebraic rules for set theory

Commutative laws A ∪ B = B ∪ A
A ∩ B = B ∩ A

Associative laws (A ∪ B) ∪ C = A ∪ (B ∪ C)
(A ∩ B) ∩ C = A ∩ (B ∩ C)

One may omit parentheses in A ∩ B ∩ C or A ∪ B ∪ C.
But don’t do that with a mix of ∪ and ∩.

Distributive laws A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
These are like a(b + c) = ab + ac

Complements A ∪ Ac = S
A ∩ Ac = ∅

De Morgan’s laws (A ∪ B)c = Ac ∩ Bc

(A ∩ B)c = Ac ∪ Bc
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Distributive laws
Visualizing identities using Venn diagrams: A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

B ∪ C A ∩ (B ∪ C)

B�C#

A# B#

C#
S#

A�(B�C)#

A# B#

C#
S#

A ∩ B A ∩ C (A ∩ B) ∪ (A ∩ C)

A�B#

A# B#

C#
S#

A�C#

A# B#

C#
S#

(A�B)�(A�C)#

A# B#

C#
S#
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Mutually exclusive sets

Two events are mutually exclusive if their intersection is ∅.
A = “First flip is heads” = {HHH, HHT, HTH, HTT}
B = “Two flips are heads” = {HHT, HTH, THH}

C = “One flip is heads” = {HTT, THT, TTH}

A and B are not mutually exclusive, since A ∩ B = {HHT, HTH} , ∅.
B and C are mutually exclusive, since B ∩ C = ∅.

For mutually exclusive events, since N(B ∩ C) = 0, we get:
N(B ∪ C) = N(B) + N(C)

Events A1, A2, . . . are pairwise mutually exclusive when
Ai ∩ Aj = ∅ for i , j.

32A1 AA
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2.3 Probability functions
Historically, there have been several ways of defining probabilities.
We’ll start with Classical Probability :

Classical probability
Suppose the sample space has n outcomes (N(S) = n) and all of
them are equally likely.
Each outcome has a probability 1/n of occurring:

P(s) = 1/n for each outcome s ∈ S

An event A ⊂ S with m outcomes has probability m/n of occurring:

P(A) =
m
n
=

N(A)
N(S)

Example: Rolling a pair of dice
N(S) = n = 36

P(first die is 3) = P
(
{(3, 1), (3, 2), . . . , (3, 6)}

)
= 6

36

P(the sum is 8) = P
(
{(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}

)
= 5

36
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Classical probability

Drawbacks
What if outcomes are not equally likely?
What if there are infinitely many outcomes?
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Empirical probability

Use long-term frequencies of different outcomes to estimate their
probabilities.

Flip a coin a lot of times. Use the fraction of times it comes up
heads to estimate the probability of heads.

520 heads out of 1000 flips leads to estimating P(heads) = 0.520.

This estimate is only approximate because
Due to random variation, the numerator will fluctuate.
Precision is limited by the denominator. 1000 flips can only
estimate it to three decimals.

More on this later in the course in Chapter 5.3.
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Empirical probability

E. coli has been sequenced:
Position: 1 2 3 4 5 6 7 8 9 10 · · ·

Base: A G C T T T T C A T · · ·

On the forwards strand:

# A’s 1,142,136 P(A) = 1,142,136
4,639,221 ≈ 0.2461913326

# C’s 1,179,433 P(C) ≈ 0.2536578878
# G’s 1,176,775 P(G) ≈ 0.2542308288
# T’s 1,140,877 P(T) ≈ 0.2459199508
Total 4,639,221 1

Sample space: set of positions S = {1, 2, . . . , 4639221}

Event A is the set of positions with nucleotide A (similar for C, G, T).
A = {1, 9, . . .} C = {3, 8, . . .} G = {2, . . .} T = {4, 5, 6, 7, 10, . . .}

Simplistic model: the sequence is generated from a biased
4-sided die with faces A, C, G, T.
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Axiomatic probability

A definition of a probability function P based on events and the
following axioms is the most useful.
Each event A ⊂ S is assigned a probability that obeys these axioms:

Axioms for a finite sample space
For any event A ⊂ S: P(A) > 0

The total sample space has probability 1: P(S) = 1

For mutually exclusive events A and B: P(A ∪ B) = P(A) + P(B)

Additional axiom for an infinite sample space
If A1, A2, . . . (infinitely many) are pairwise mutually exclusive, then

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai)

∞⋃
i=1

Ai = A1 ∪ A2 ∪ · · · is like
∑

notation, but for unions.
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Axiomatic probability — additional properties

Additional properties of the probability function follow from the axioms.

P(Ac) = 1 − P(A)

Example: P(die roll = 1) = 1
6 P(die roll , 1) = 1 − 1

6 = 5
6

Proof.
A and Ac are mutually exclusive, so
P(A ∪ Ac) = P(A) + P(Ac).

Also, P(A ∪ Ac) = P(S) = 1.

Thus, P(Ac) = 1 − P(A). �
c

A

A

P(∅) = 0
Proof: P(∅) = P(Sc) = 1 − P(S) = 1 − 1 = 0
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Axiomatic probability — additional properties

If A ⊂ B then P(A) 6 P(B)
Proof: Write B = A ∪ (Ac ∩ B).
A and Ac ∩ B are mutually exclusive, so

P(B) = P(A) + P(Ac ∩ B).
The first axiom gives P(Ac ∩ B) > 0, so

P(B) > P(A).

B

A B
c

A

U

P(A) 6 1
Proof: A ⊂ S so P(A) 6 P(S) = 1.
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Axiomatic probability — additional properties

32A1 AA

Additive Law
If A1, A2, . . . , An are pairwise mutually exclusive, then

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

P(Ai)

n⋃
i=1

Ai = A1 ∪ A2 ∪ · · · ∪ An is like
∑

notation, but for unions.

Prove for all integers n > 1 using induction, based on:

P
(
(A1 ∪ · · · ∪ An) ∪ An+1

)
= P(A1 ∪ · · · ∪ An) + P(An+1)

=
(
P(A1) + · · ·+ P(An)

)
+ P(An+1).

Prof. Tesler Ch. 2.3-2.4 Intro to Probability Math 186 / Winter 2019 21 / 26



Axiomatic probability — additional properties

32A1 AA

Induction proves the Additive Law for positive integers n = 1, 2, . . ., but
not for n =∞, so we have to introduce an additional axiom for that:

Additional axiom for an infinite sample space
If A1, A2, . . . (infinitely many) are pairwise mutually exclusive, then

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai)
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Axiomatic probability — additional properties

BA
c

c

c

c

A B

U

U B

UA B

U

A B

U

A B A

De Moivre’s Law: P(A ∪ B) = P(A) + P(B) − P(A ∩ B)
Proof:

P(A) = P(A ∩ B) + P(A ∩ Bc)

P(B) = P(A ∩ B) + P(Ac ∩ B)

P(A) + P(B) = P(A ∩ B) +
(
P(A ∩ B) + P(A ∩ Bc) + P(Ac ∩ B)

)
= P(A ∩ B) + P(A ∪ B)
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Axiomatic probability — additional properties

Additional properties of the probability function follow from the axioms:

P(Ac) = 1 − P(A)

P(∅) = 0

If A ⊂ B then P(A) 6 P(B)

P(A) 6 1

Additive Law: If A1, A2, . . . , An are pairwise mutually exclusive
(Ai ∩ Aj = ∅ for all i , j) then

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

P(Ai)

(The first three axioms only lead to a proof of this for finite n, but
not n =∞, so n =∞ has to be handled by an additional axiom.)
De Moivre’s Law: P(A ∪ B) = P(A) + P(B) − P(A ∩ B)
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Generalizing Sigma (
∑

) notation
Sum over sets instead of over a range of consecutive integers

Consider a biased n-sided die, with faces 1, . . . , n.
The probability of face i is qi, with 0 6 qi 6 1, and q1 + · · ·+ qn = 1:

n∑
i=1

qi = 1

For n = 8, the probability of an even number is:

P(even number) =
∑

s∈{2,4,6,8}

qs = q2 + q4 + q6 + q8

For a 26-sided die with faces A,B,. . . ,Z, the total probability is

P({A, B, . . . , Z}) =
∑

s∈{A,B,...,Z}

qs = qA + qB + · · ·+ qZ = 1,

and the probability of a vowel is

P({A, E, I, O, U}) =
∑

s∈{A,E,I,O,U}

qs = qA + qE + qI + qO + qU .
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Finite discrete sample space
Each outcome has a probability between 0 and 1 and the
probabilities add up to 1:

0 6 P(s) 6 1 for each s ∈ S
∑
s∈S

P(s) = 1

For an event A ⊂ S, define P(A) =
∑

s∈A P(s).

Examples
A biased n-sided die (previous slide).
For flipping a coin 3 times,
P({HHT, HTH, THH}) = P(HHT) + P(HTH) + P(THH).

DNA
Generate a random DNA sequence by rolling a biased ACGT-die.
Deviations from what’s expected from random rolls of a dice are
used to detect structure in the DNA sequence, like genes, codons,
repeats, etc.
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