3.7, 3.8, 3.9, 3.11 Functions of multiple random variables (continuous)

Prof. Tesler

Math 186
Winter 2016
Two-dimensional version:

- Consider a shape $B \subset \mathbb{R}^2$.
- Make very thin horizontal and vertical cuts.
- Let $\rho(x, y)$ be the \textit{density} at (x, y). This is the mass per unit area.
- It can be measured in g/cm2. In 3D, it would be g/cm3.
- $\rho(x, y) \geq 0$ everywhere.
- The area of a differential patch is $dA = dx \, dy = dy \, dx$.
- The mass of a differential patch is $\rho(x, y) \, dA$ (density times area).
- The total mass of B is $\int \int_B \rho(x, y) \, dA$.
Continuous joint probability density function

Joint probability density function of two variables

We require:

1. \(f_{X,Y}(x, y) \geq 0 \) for all points \((x, y)\).
2. \(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dx \, dy = 1 \)

Probability of an event

The probability of event \(B \subseteq \mathbb{R}^2 \) is

\[
P(B) = \int_{B} f_{X,Y}(x, y) \, dA
\]
Uniform probability on a region C

- **Uniform probability** on a region C means that all points inside C have equal probability density, and all points outside C have probability density 0:

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{\text{area}(C)} & \text{if } (x,y) \in C \\ 0 & \text{otherwise} \end{cases}$$

- Let C be the disk of radius 2 centered at the origin:

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{4\pi} & \text{if } x^2 + y^2 \leq 4 \\ 0 & \text{otherwise} \end{cases}$$

- Total probability:

$$\int\int_C \frac{1}{4\pi} \, dA = \frac{1}{4\pi} \cdot \text{area}(C) = \frac{1}{4\pi} \cdot 4\pi = 1$$
Probability of an event

\[P(X > 0) = \int \int_D \frac{1}{4\pi} \, dA = \frac{1}{4\pi} \text{area}(D) = \frac{1}{4\pi} \cdot \frac{4\pi}{2} = \frac{1}{2} \]
Marginal densities

The marginal density at \(x \):
Form an \(x\)-strip.
Hold \(x \) constant and integrate over all \(y \).

\[
f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dy
\]

\[
= \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \frac{1}{4\pi} \, dy
\]

\[
= \frac{2\sqrt{4-x^2}}{4\pi}
\]

\[
f_X(x) = \begin{cases}
\frac{\sqrt{4-x^2}}{2\pi} & \text{if } -2 \leq x \leq 2 \\
0 & \text{otherwise}
\end{cases}
\]
Marginal densities

The marginal density at y is similar:
Form a y-strip.
Hold y constant and integrate over all x.

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dx$$
$$= \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} \frac{1}{4\pi} \, dx$$
$$= \frac{2}{4\pi} \sqrt{4-y^2}$$

$$f_Y(y) = \begin{cases} \frac{\sqrt{4-y^2}}{2\pi} & \text{if } -2 \leq y \leq 2 \\ 0 & \text{otherwise} \end{cases}$$
Random variables X, Y, Z, \ldots are independent if their joint pdf factorizes as follows, for all x, y, z, \ldots:

$$f_{X,Y,Z,\ldots}(x, y, z, \ldots) = f_X(x)f_Y(y)f_Z(z) \cdots$$

Technicality: Exceptions are allowed, as long as the probability of an exception is 0. E.g., for a continuous distribution, the probability of a point is 0; in 2D, the probability of a discrete set of points or curves is 0; etc. This doesn’t happen for discrete distributions.
Independence

Summary of previous formulas

\[f_{X,Y}(x, y) = \begin{cases} \frac{1}{4\pi} & \text{if } x^2 + y^2 \leq 4 \\ 0 & \text{otherwise} \end{cases} \]

\[f_X(x) = \begin{cases} \sqrt{4 - x^2}/(2\pi) & \text{if } -2 \leq x \leq 2 \\ 0 & \text{otherwise} \end{cases} \]

\[f_Y(y) = \begin{cases} \sqrt{4 - y^2}/(2\pi) & \text{if } -2 \leq y \leq 2 \\ 0 & \text{otherwise} \end{cases} \]

Check independence:

\[f_X(x)f_Y(y) = \begin{cases} \sqrt{(4 - x^2)(4 - y^2)}/(4\pi^2) & \text{if } -2 \leq x \leq 2 \text{ and } -2 \leq y \leq 2 \\ 0 & \text{otherwise} \end{cases} \]

This is different than \(f_{X,Y}(x, y) \). The formula is different, and it’s nonzero inside a square instead of inside a circle. So \(X, Y \) are dependent.
Expected values

Definition
For a function $g(X, Y)$ of continuous random variables, the expected value is

\[E(g(X, Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y)f_{X,Y}(x, y) \, dA \]

This is similar to the definition in the discrete case, but using integrals instead of sums.

Compute $E(X)$ for the circle example

\[E(X) = \int \int_{\text{left semicircle}} \frac{x}{4\pi} \, dA + \int \int_{\text{right semicircle}} \frac{x}{4\pi} \, dA = 0 \]

The two integrals are negatives of each other, so they sum to 0.
Compute $E(R)$ in the circle example

In polar coordinates, recall $R = \sqrt{X^2 + Y^2}$. Compute $E(R)$:

$$E(R) = E \left(\sqrt{X^2 + Y^2} \right) = \iint_C \sqrt{x^2 + y^2} \cdot \frac{1}{4\pi} \, dA$$

- This is easier in polar coordinates than in Cartesian coordinates. Switch to polar coordinates, and note that the integral separates:

$$E(R) = \iint_C \frac{r}{4\pi} \, dA = \int_0^{2\pi} \int_0^2 \frac{r}{4\pi} \cdot r \, dr \, d\theta = \frac{1}{4\pi} \left(\int_0^{2\pi} d\theta \right) \left(\int_0^2 r^2 \, dr \right)$$

- Evaluate the integrals:

$$\int_0^{2\pi} d\theta = \theta \bigg|_{\theta=0}^{\theta=2\pi} = 2\pi - 0 = 2\pi \quad \int_0^2 r^2 \, dr = \frac{r^3}{3} \bigg|_{r=0}^{r=2} = \frac{2^3 - 0^3}{3} = \frac{8}{3}$$

- Plug in their values:

$$E(R) = \frac{1}{4\pi} \left(2\pi \right) \left(\frac{8}{3} \right) = \frac{16\pi}{12\pi} = \frac{4}{3}$$
The variance formula is the same for continuous as for discrete:

\[\text{Var}(X) = E((X - \mu)^2) = E(X^2) - (E(X))^2 \]

However, expected value is computed using an integral instead of a sum.

Compute \(\text{Var}(R) \) and \(\text{SD}(R) \):

\[
E(R^2) = \iint_C \frac{r^2}{4\pi} \, dA = \int_0^{2\pi} \int_0^2 \frac{r^2}{4\pi} \cdot r \, dr \, d\theta = \frac{1}{4\pi} \left(\int_0^{2\pi} d\theta \right) \left(\int_0^2 r^3 \, dr \right)
\]

\[
\int_0^{2\pi} d\theta = 2\pi \quad \int_0^2 r^3 \, dr = \frac{r^4}{4} \bigg|_{r=0}^{r=2} = \frac{2^4 - 0^4}{4} = 4
\]

\[
E(R^2) = \frac{1}{4\pi} (2\pi)(4) = 2
\]

\[
\text{Var}(R) = E(R^2) - (E(R))^2 = 2 - \left(\frac{4}{3} \right)^2 = \frac{2}{9} \quad \text{SD}(R) = \sqrt{\frac{2}{9}}
\]
Mass density in physics vs. continuous pdf

<table>
<thead>
<tr>
<th>Physics</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass density</td>
<td>Probability density function</td>
</tr>
<tr>
<td>$\rho(x, y) \geq 0$</td>
<td>$f_{X,Y}(x, y) \geq 0$</td>
</tr>
<tr>
<td>Mass of shape $D \subset \mathbb{R}^2$:</td>
<td>Probability of event $D \subset \mathbb{R}^2$:</td>
</tr>
<tr>
<td>$M = \int\int_D \rho(x, y) , dA \geq 0$</td>
<td>$P(D) = \int\int_D f_{X,Y}(x, y) , dA$ and $P(\mathbb{R}^2) = 1$</td>
</tr>
<tr>
<td>Center of mass (\bar{x}, \bar{y})</td>
<td>Expected value</td>
</tr>
<tr>
<td>$\bar{x} = \frac{\int\int_D x \cdot \rho(x, y) , dA}{\int\int_D \rho(x, y) , dA}$</td>
<td>$E(X) = \int\int_{\mathbb{R}^2} x \cdot f_{X,Y}(x, y) , dA = \text{numerator of } \bar{x}$.</td>
</tr>
<tr>
<td></td>
<td>The denominator of \bar{x} is 1, since $M = 1$.</td>
</tr>
<tr>
<td>\bar{y} formula is similar</td>
<td>$E(Y)$ formula is similar</td>
</tr>
</tbody>
</table>

- When the total mass is 1, we have $(\bar{x}, \bar{y}) = (E(X), E(Y))$.
- We used \mathbb{R}^2. For \mathbb{R}^n, use (x_1, \ldots, x_n) instead of (x, y).
Question: Determine the formula of the probability density if it is proportional to \(x + 4y \) inside the rectangle and is 0 outside.

- We have \(f_{X,Y}(x, y) = c(x + 4y) \) inside the rectangle and 0 outside, for some constant \(c \).
- Find \(c \) so that the total probability is 1:

\[
P = \int_{0}^{2} \int_{0}^{1} c(x + 4y) \, dy \, dx = 1
\]

- The inside integral is

\[
c(xy + 2y^2) \bigg|_{y=0}^{y=1} = c(x(1 - 0) + 2(1^2 - 0^2)) = c(x + 2)
\]

- Plug that back in: \(P = \int_{0}^{2} c(x + 2) \, dx \)
Determining the constant

Continue evaluating:

\[P = \int_{0}^{2} c(x + 2) \, dx = c \left(\frac{x^2}{2} + 2x \right){\bigg|}_{x=0}^{2} \]

\[= c \left(\frac{2^2-0^2}{2} + 2(2 - 0) \right) = c \cdot (2 + 4) = 6c \]

To get \(P = 1 \), solve \(6c = 1 \), so \(c = 1/6 \).

Plug this value of \(c \) into the formula \(f_{X,Y}(x, y) = c(x + 4y) \).

Thus, the pdf is

\[f_{X,Y}(x, y) = \begin{cases}
\frac{x+4y}{6} & \text{inside rectangle: } 0 \leq x \leq 2 \text{ and } 0 \leq y \leq 1 \\
0 & \text{outside rectangle}
\end{cases} \]
For $0 \leq x \leq 2$:

$$f_X(x) = \int_0^1 \frac{x + 4y}{6} \, dy = \frac{xy + 2y^2}{6} \bigg|_{y=0}^{1} = \frac{x(1 - 0) + 2(1^2 - 0^2)}{6} = \frac{x + 2}{6}$$

Otherwise, $f_X(x) = 0$.
Marginal densities for rectangle example

For $0 \leq y \leq 1$:

$$f_Y(y) = \int_0^2 \frac{x + 4y}{6} \, dx = \left(\frac{x^2 + 4xy}{12} \right) \bigg|_{x=0}^2$$

$$= \left(\frac{2^2 - 0^2}{12} + \frac{4(2 - 0)y}{6} \right)$$

$$= \frac{4}{12} + \frac{8y}{6} = \frac{4y + 1}{3}$$

Otherwise, $f_Y(y) = 0$.
Independence in rectangle example

- Recall we computed:

\[f_{X,Y}(x, y) = \begin{cases} \frac{x+4y}{6} & \text{inside rectangle: } 0 \leq x \leq 2 \text{ and } 0 \leq y \leq 1 \\ 0 & \text{outside rectangle} \end{cases} \]

- Check independence:

\[f_X(x) = \begin{cases} \frac{x+2}{6} & \text{if } 0 \leq x \leq 2 \\ 0 & \text{otherwise} \end{cases} \]

\[f_Y(y) = \begin{cases} \frac{4y+1}{3} & \text{if } 0 \leq y \leq 1 \\ 0 & \text{otherwise} \end{cases} \]

\[f_X(x) \cdot f_Y(y) = \begin{cases} \frac{(x+2)(4y+1)}{18} & \text{if } 0 \leq x \leq 2 \text{ and } 0 \leq y \leq 1 \\ 0 & \text{otherwise} \end{cases} \]

\[\neq f_{X,Y}(x, y) \] so \(X \) and \(Y \) are dependent.
The **joint cumulative distribution function (cdf)** for two random variables X, Y is

$$F_{X,Y}(x, y) = P(X \leq x, Y \leq y).$$

For multiple random variables, the formula is similar.

As an integral:

$$F_{X,Y}(x, y) = P(X \leq x, Y \leq y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(u, v) \, dv \, du = \int_{-\infty}^{y} \int_{-\infty}^{x} f_{X,Y}(u, v) \, du \, dv.$$

Since we used (x, y) in the limits of the integral, the integration variables had to be renamed; here, we used (u, v) instead. Alternatively, some people prefer to do it the other way around:

$$F_{X,Y}(u, v) = P(X \leq u, Y \leq v) = \int_{-\infty}^{v} \int_{-\infty}^{u} f_{X,Y}(x, y) \, dx \, dy.$$
Joint cdf in rectangle example

\[f_{X,Y}(x,y) = \begin{cases}
\frac{x+4y}{6} & \text{inside rectangle:} \\
0 & \text{outside rectangle}
\end{cases} \]

\[0 \leq x \leq 2 \text{ and } 0 \leq y \leq 1 \]

Consider \((x,y)\) inside the rectangle:

\[F_{X,Y}(x,y) = \int_0^x \int_0^y \frac{u + 4v}{6} \, dv \, du \]

Inside integral:

\[
\int_0^y \frac{u + 4v}{6} \, dv = \frac{uv + 2v^2}{6} \bigg|_{v=0}^{v=y} = \frac{u(y - 0) + 2(y^2 - 0^2)}{6} = \frac{uy + 2y^2}{6}
\]

Outside integral:

\[
F_{X,Y}(x,y) = \int_0^x \frac{uy + 2y^2}{6} \, du = \left(\frac{u^2y}{12} + \frac{uy^2}{3} \right) \bigg|_{u=0}^{u=x} = \frac{x^2y}{12} + \frac{xy^2}{3}
\]
Differentiating the cdf

- Evaluate

\[
\frac{\partial^2}{\partial x \, \partial y} F_{X,Y}(x, y) = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} F_{X,Y}(x, y) \right)
\]

- Inside derivative:

\[
\frac{\partial}{\partial y} F_{X,Y}(x, y) = \frac{\partial}{\partial y} \left(\frac{x^2 y}{12} + \frac{xy^2}{3} \right) = \frac{x^2}{12} + \frac{2xy}{3}
\]

- Outside derivative:

\[
\frac{\partial^2}{\partial x \, \partial y} F_{X,Y}(x, y) = \frac{\partial}{\partial x} \left(\frac{x^2}{12} + \frac{2xy}{3} \right) = \frac{x}{6} + \frac{2y}{3} = \frac{x + 4y}{6} = f_{X,Y}(x, y)
\]

- In general, the cdf is the double integral of the pdf with respect to \(x \) and \(y \), and inversely, the pdf is the double derivative of the cdf with respect to \(x \) and \(y \).
The pdf $f_{X,Y}(x, y) = (x + 4y)/6$ is nonzero only in the blue rectangle.

The region $\leq (x, y)$ can intercept the rectangle in different ways, depending on where (x, y) is in relation to the rectangle.

If $x < 0$ or $y < 0$, then the pdf is 0 in the whole integration region, so $F_{X,Y}(x, y) = 0$.

This satisfies $f_{X,Y}(x, y) = \frac{\partial^2}{\partial x \partial y} F_{X,Y}(x, y) = 0$.

Prof. Tesler
Ch. 3. Joint random variables (continuous)
Math 186 / Winter 2016
22 / 28
Remaining cases: In this example, when \((x, y)\) is right of and/or above the rectangle, the intercepted region becomes the cdf of another point:

Right: If \(x > 2\) and \(0 \leq y \leq 1\)

\[
F_{X,Y}(x, y) = F_{X,Y}(2, y) = \frac{4y}{12} + \frac{2y^2}{3} = \frac{y + 2y^2}{3}
\]

Above: If \(y > 1\) and \(0 \leq x \leq 2\)

\[
F_{X,Y}(x, y) = F_{X,Y}(x, 1) = \frac{x^2}{12} + \frac{x}{3} = \frac{x^2 + 4x}{12}
\]

Above and right: If \(x > 2\) and \(y > 1\)

\[
F_{X,Y}(x, y) = F_{X,Y}(2, 1) = \frac{2^2 \cdot 1}{12} + \frac{2 \cdot 1}{3} = 1
\]

In all of these, \(f_{X,Y}(x, y) = \frac{\partial^2}{\partial x \partial y} F_{X,Y}(x, y) = 0\).
Evaluate $P(Y > 3X)$ in the rectangle example:

Compute $\int\int_D f_{X,Y}(x,y) \, dA = \int\int_D \frac{x+4y}{6} \, dA$ over the shaded triangle, D.

Can use x-slices or y-slices. Both give the same final answer. x-slices are left as an exercise for you. The y-slices are:

One y-slice for each $0 \leq y \leq 1$. It runs over $0 \leq x \leq y/3$.

The integral is

$$P(Y > 3X) = \int_0^1 \int_0^{y/3} \frac{x + 4y}{6} \, dx \, dy$$
Probability of an event

\[P(Y > 3X) = \int_0^1 \int_0^{y/3} \frac{x + 4y}{6} \, dx \, dy \]

- **Inside integral:**

\[\int_0^{y/3} \frac{x + 4y}{6} \, dx = \left(\frac{x^2}{12} + \frac{4xy}{6} \right) \bigg|_{x=0}^{x=y/3} \]

\[= \frac{(y/3)^2 - 0^2}{12} + \frac{4(y/3)y}{6} = \frac{y^2}{108} + \frac{4y^2}{18} = \frac{25y^2}{108} \]

- **Outside integral:**

\[P(Y > 3X) = \int_0^1 \frac{25y^2}{108} \, dy = \frac{25y^3}{324} \bigg|_0^1 = \frac{25(1^3 - 0^3)}{324} = \frac{25}{324} \]
Conditional probability example #1

\[P(A|B) \text{ where } A \text{ and } B \text{ have the same dimension} \]

Evaluate \(P(Y > \frac{1}{2} \mid X < 1) \) in the rectangle example:

- This is \(1 - P(Y \leq \frac{1}{2} \mid X < 1) \). We have:
 \[
 P(Y \leq \frac{1}{2} \mid X < 1) = \frac{P(Y \leq \frac{1}{2} \text{ and } X < 1)}{P(X < 1)} = \frac{F_{X,Y}(1, 1/2)}{F_X(1)}
 \]

- Recall that inside the rectangle, we have
 \[
 F_{X,Y}(x, y) = \frac{x^2y}{12} + \frac{xy^2}{3}
 \]
 and we used tricks to evaluate it outside the rectangle.

- \[
 F_{X,Y}(1, 1/2) = \frac{(1^2)(1/2)}{12} + \frac{(1)(1/2)^2}{3} = \frac{1}{24} + \frac{1}{12} = \frac{3}{24} = \frac{1}{8}
 \]
- \[
 F_X(1) = F_{X,Y}(1, \infty) = F_{X,Y}(1, 1) = \frac{(1^2)(1)}{12} + \frac{(1)(1^2)}{3} = \frac{1}{12} + \frac{1}{3} = \frac{5}{12}
 \]
- Plug these into the above formulas to get
 \[
 P(Y > \frac{1}{2} \mid X < 1) = 1 - P(Y \leq \frac{1}{2} \mid X < 1) = 1 - \frac{F_{X,Y}(1,1/2)}{F_X(1)}
 \]
 \[
 = 1 - \frac{1/8}{5/12} = 1 - \frac{3}{10} = \frac{7}{10}
 \]
Conditional probability example #2

\(P(A|B)\) where \(A\) and \(B\) have different dimensions

Evaluate \(P(Y > \frac{1}{2} \mid X = 1)\) in the rectangle example:

- \(\frac{P(Y > \frac{1}{2} \text{ and } X=1)}{P(X=1)} = \frac{0}{0}\) does not work.

- Instead, define the conditional probability density at \(X = x\):

\[
f_Y(y \mid X = x) = \frac{f_{X,Y}(x, y)}{f_X(x)}
\]

For a given value of \(x\), this is a function of varying \(y\).
It’s proportional to \(f_{X,Y}(x, y)\) but is renormalized so that the total probability as \(y\) varies in the strip \(X = x\) is 1:

\[
\int_{-\infty}^{\infty} f_Y(y \mid X = x) \, dy = \int_{-\infty}^{\infty} \frac{f_{X,Y}(x, y)}{f_X(x)} \, dy = \frac{\int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dy}{f_X(x)} = \frac{f_X(x)}{f_X(x)} = 1
\]
Conditional probability example #2

\[P(A \mid B) \text{ where } A \text{ and } B \text{ have different dimensions} \]

Evaluate \(P(Y > \frac{1}{2} \mid X = 1) \) in the rectangle example:

- The conditional probability density at \(X = x \) is

\[
f_Y(y \mid X = x) = \frac{f_{X,Y}(x,y)}{f_X(x)}
\]

- In the rectangle example, for \(x \) and \(y \) within the rectangle:

\[
f_Y(y \mid X = x) = \frac{f_{X,Y}(x,y)}{f_X(x)} = \frac{(x + 4y)/6}{(x + 2)/6} = \frac{x + 4y}{x + 2}
\]

\[
f_Y(y \mid X = 1) = \frac{1 + 4y}{3}
\]

\[
P(Y > \frac{1}{2} \mid X = 1) = \int_{1/2}^{\infty} f_Y(y \mid X = 1) \, dy = \int_{1/2}^{1} \frac{1 + 4y}{3} \, dy = \frac{y + 2y^2}{3} \bigg|_{y=1/2}^{y=1} = \frac{1 - (1/2)}{3} + \frac{2(1^2 - (1/2)^2)}{3} = \frac{1}{3} + \frac{1}{3} + \frac{2(3/4)}{3} = \frac{2}{3}
\]