3.7, 3.8, 3.9, 3.11 Functions of multiple random variables (continuous)

Prof. Tesler

Math 186
Winter 2019

Mass density (review from Calculus and Physics)

Two-dimensional version:

- Consider a shape $B \subseteq \mathbb{R}^{2}$.
- Make very thin horizontal and vertical cuts.
- Let $\rho(x, y)$ be the density at (x, y). This is the mass per unit area.
- It can be measured in $\mathrm{g} / \mathrm{cm}^{2}$. In 3D, it would be $\mathrm{g} / \mathrm{cm}^{3}$.
- $\rho(x, y) \geqslant 0$ everywhere.
- The area of a differential patch is $d A=d x d y=d y d x$.
- The mass of a differential patch is $\rho(x, y) d A$ (density times area).
- The total mass of B is $\iint_{B} \rho(x, y) d A$

Continuous joint probability density function

Joint probability density function of two variables

We require:

- $f_{X, Y}(x, y) \geqslant 0$ for all points (x, y).
- $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=1$

Probability of an event

The probability of event $B \subseteq \mathbb{R}^{2}$ is

$$
P(B)=\iint_{B} f_{X, Y}(x, y) d A
$$

Uniform probability on a region C

- Uniform probability on a region C means that all points inside C have equal probability density, and all points outside C have probability density 0 :

$$
f_{X, Y}(x, y)= \begin{cases}\frac{1}{\operatorname{area}(C)} & \text { if }(x, y) \in C \\ 0 & \text { otherwise }\end{cases}
$$

- Let C be the disk of radius 2 centered at the origin:

$$
f_{X, Y}(x, y)= \begin{cases}\frac{1}{4 \pi} & \text { if } x^{2}+y^{2} \leqslant 4 \\ 0 & \text { otherwise }\end{cases}
$$

- Total probability $=\iint_{C} \frac{1}{4 \pi} d A=\frac{1}{4 \pi} \cdot \operatorname{area}(C)=\frac{1}{4 \pi} \cdot 4 \pi=1$

Probability of an event

Marginal densities

- Form an x-strip: hold x constant and vary y.
- The perimeter is $x^{2}+y^{2}=4$, so $y= \pm \sqrt{4-x^{2}}$ on the perimeter.
- The strip is vertical, so the - solution is at the bottom and the + solution is at the top.
- The part of the strip within the shape is $-\sqrt{4-x^{2}} \leqslant y \leqslant \sqrt{4-x^{2}}$.

Marginal densities

The marginal density at x :
Form an x-strip.
Hold x constant and integrate over all y.

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y \\
& =\int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \frac{1}{4 \pi} d y \\
& =\frac{2 \sqrt{4-x^{2}}}{4 \pi}
\end{aligned}
$$

$$
f_{X}(x)= \begin{cases}\frac{\sqrt{4-x^{2}}}{2 \pi} & \text { if }-2 \leqslant x \leqslant 2 \\ 0 & \text { otherwise }\end{cases}
$$

Marginal densities

The marginal density at y is similar.
Form a y-strip.
Hold y constant and integrate over all x.
The strip is horizontal and goes left to right instead of bottom to top.

$$
\begin{aligned}
f_{Y}(y) & =\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x \\
& =\int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} \frac{1}{4 \pi} d x \\
& =\frac{2 \sqrt{4-y^{2}}}{4 \pi}
\end{aligned}
$$

$$
f_{Y}(y)= \begin{cases}\frac{\sqrt{4-y^{2}}}{2 \pi} & \text { if }-2 \leqslant y \leqslant 2 \\ 0 & \text { otherwise }\end{cases}
$$

Independence

- Random variables X, Y, Z, \ldots are independent if their joint pdf factorizes as follows, for all x, y, z, \ldots.

$$
f_{X, Y, Z, \ldots}(x, y, z, \ldots)=f_{X}(x) f_{Y}(y) f_{Z}(z) \cdots
$$

- Technicality: Exceptions are allowed, as long as the probability of an exception is 0 . For example, in a continuous distribution:
- The probability of a point is 0 .
- In 2D, the probability of a discrete set of points or curves is 0 .
- Exceptions only happen with continuous distributions, not discrete.

Independence

Summary of previous formulas

$$
\begin{aligned}
& f_{X, Y}(x, y)= \begin{cases}\frac{1}{4 \pi} & \text { if } x^{2}+y^{2} \leqslant 4 \\
0 & \text { otherwise }\end{cases} \\
& f_{X}(x)= \begin{cases}\sqrt{4-x^{2}} /(2 \pi) & \text { if }-2 \leqslant x \leqslant 2 \\
0 & \text { otherwise }\end{cases} \\
& f_{Y}(y)= \begin{cases}\sqrt{4-y^{2}} /(2 \pi) & \text { if }-2 \leqslant y \leqslant 2 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Check independence:

$$
f_{X}(x) f_{Y}(y)= \begin{cases}\sqrt{\left(4-x^{2}\right)\left(4-y^{2}\right)} /\left(4 \pi^{2}\right) & \text { if }-2 \leqslant x \leqslant 2 \text { and }-2 \leqslant y \leqslant 2 \\ 0 & \text { otherwise }\end{cases}
$$

This is different than $f_{X, Y}(x, y)$. The formula is different, and it's nonzero inside a square instead of inside a circle. So X, Y are dependent.

Expected values

Definition

For a function $g(X, Y)$ of continuous random variables, the expected value is

$$
E(g(X, Y))=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d A
$$

This is similar to the definition in the discrete case, but using integrals instead of sums.

Compute $E(X)$ for the circle example

$$
E(X)=\iint_{\text {left semicircle }} \frac{x}{4 \pi} d A+\iint_{\text {right semicircle }} \frac{x}{4 \pi} d A=\mathbf{0}
$$

The two integrals are negatives of each other, so they sum to 0 .

Compute $E(R)$ in the circle example

In polar coordinates, recall $R=\sqrt{X^{2}+Y^{2}}$. Compute $E(R)$:

$$
E(R)=E\left(\sqrt{X^{2}+Y^{2}}\right)=\iint_{C} \sqrt{x^{2}+y^{2}} \cdot \frac{1}{4 \pi} d A
$$

- This is easier in polar coordinates than in Cartesian coordinates. Switch to polar coordinates, and note that the integral separates:

$$
E(R)=\iint_{C} \frac{r}{4 \pi} d A=\int_{0}^{2 \pi} \int_{0}^{2} \frac{r}{4 \pi} \cdot r d r d \theta=\frac{1}{4 \pi}\left(\int_{0}^{2 \pi} d \theta\right)\left(\int_{0}^{2} r^{2} d r\right)
$$

- Evaluate the integrals:

$$
\int_{0}^{2 \pi} d \theta=\left.\theta\right|_{\theta=0} ^{\theta=2 \pi}=2 \pi-0=2 \pi \quad \int_{0}^{2} r^{2} d r=\left.\frac{r^{3}}{3}\right|_{r=0} ^{r=2}=\frac{2^{3}-0^{3}}{3}=\frac{8}{3}
$$

- Plug in their values:

$$
E(R)=\frac{1}{4 \pi}(2 \pi)\left(\frac{8}{3}\right)=\frac{16 \pi}{12 \pi}=\frac{\mathbf{4}}{\mathbf{3}}
$$

Variance

- The variance formula is the same for continuous as for discrete:

$$
\operatorname{Var}(X)=E\left((X-\mu)^{2}\right)=E\left(X^{2}\right)-(E(X))^{2}
$$

However, expected value is computed using an integral instead of a sum.

- Compute $\operatorname{Var}(R)$ and $\operatorname{SD}(R)$:

$$
\begin{gathered}
E\left(R^{2}\right)=\iint_{C} \frac{r^{2}}{4 \pi} d A=\int_{0}^{2 \pi} \int_{0}^{2} \frac{r^{2}}{4 \pi} \cdot r d r d \theta=\frac{1}{4 \pi}\left(\int_{0}^{2 \pi} d \theta\right)\left(\int_{0}^{2} r^{3} d r\right) \\
\int_{0}^{2 \pi} d \theta=2 \pi \quad \int_{0}^{2} r^{3} d r=\left.\frac{r^{4}}{4}\right|_{r=0} ^{2}=\frac{2^{4}-0^{4}}{4}=4 \\
E\left(R^{2}\right)=\frac{1}{4 \pi}(2 \pi)(4)=2 \\
\operatorname{Var}(R)=E\left(R^{2}\right)-(E(R))^{2}=2-(4 / 3)^{2}=\mathbf{2 / 9} \quad \operatorname{SD}(R)=\sqrt{2 / 9}
\end{gathered}
$$

Mass density in physics vs. continuous pdf

Physics

Probability

Mass density

$$
\rho(x, y) \geqslant 0
$$

Mass of shape $\boldsymbol{D} \subseteq \mathbb{R}^{\mathbf{2}}$:

$$
M=\iint_{D} \rho(x, y) d A \geqslant 0
$$

Center of mass $(\bar{x}, \overline{\boldsymbol{y}})$

$$
\bar{x}=\frac{\iint_{D} x \cdot \rho(x, y) d A}{\iint_{D} \rho(x, y) d A}
$$

\bar{y} formula is similar

Probability density function

$$
f_{X, Y}(x, y) \geqslant 0
$$

Probability of event $\boldsymbol{D} \subseteq \mathbb{R}^{2}$:

$$
P(D)=\iint_{D} f_{X, Y}(x, y) d A \quad \text { and } P\left(\mathbb{R}^{2}\right)=1
$$

Expected value

$$
E(X)=\iint_{\mathbb{R}^{2}} x \cdot f_{X, Y}(x, y) d A=\text { numerator of } \bar{x} .
$$

The denominator of \bar{x} is 1 , since $M=1$. $E(Y)$ formula is similar

- When the total mass is 1 , we have $(\bar{x}, \bar{y})=(E(X), E(Y))$.
- We used \mathbb{R}^{2}. For \mathbb{R}^{n}, use $\left(x_{1}, \ldots, x_{n}\right)$ instead of (x, y).

Determining the constant

Question: Determine the formula of the probability density if it is proportional to $x+4 y$ inside the rectangle and is 0 outside.

- We have $f_{X, Y}(x, y)=c(x+4 y)$ inside the rectangle and 0 outside, for some constant c.
- Find c so that the total probability is 1 :

$$
P=\int_{0}^{2} \int_{0}^{1} c(x+4 y) d y d x=1
$$

- The inside integral is

$$
\left.c\left(x y+2 y^{2}\right)\right|_{y=0} ^{y=1}=c\left(x(1-0)+2\left(1^{2}-0^{2}\right)\right)=c(x+2)
$$

- Plug that back in: $P=\int_{0}^{2} c(x+2) d x$

Determining the constant

- Continue evaluating:

$$
\begin{aligned}
P & =\int_{0}^{2} c(x+2) d x=\left.c\left(\frac{x^{2}}{2}+2 x\right)\right|_{x=0} ^{2} \\
& =c\left(\frac{2^{2}-0^{2}}{2}+2(2-0)\right)=c \cdot(2+4)=6 c
\end{aligned}
$$

- To get $P=1$, solve $6 c=1$, so $c=1 / 6$.
- Plug this value of c into the formula $f_{X, Y}(x, y)=c(x+4 y)$.
- Thus, the pdf is

$$
f_{X, Y}(x, y)= \begin{cases}\frac{x+4 y}{6} & \text { inside rectangle: } 0 \leqslant x \leqslant 2 \text { and } 0 \leqslant y \leqslant 1 \\ 0 & \text { outside rectangle }\end{cases}
$$

Marginal densities for rectangle example

- For $0 \leqslant x \leqslant 2$:

$$
\begin{aligned}
f_{X}(x) & =\int_{0}^{1} \frac{x+4 y}{6} d y=\left.\frac{x y+2 y^{2}}{6}\right|_{y=0} ^{1} \\
& =\frac{x(1-0)+2\left(1^{2}-0^{2}\right)}{6}=\frac{x+2}{6}
\end{aligned}
$$

- Otherwise, $f_{X}(x)=0$.

Marginal densities for rectangle example

- For $0 \leqslant y \leqslant 1$:

$$
\begin{aligned}
f_{Y}(y) & =\int_{0}^{2} \frac{x+4 y}{6} d x=\left.\left(\frac{x^{2}}{12}+\frac{4 x y}{6}\right)\right|_{x=0} ^{2} \\
& =\left(\frac{2^{2}-0^{2}}{12}+\frac{4(2-0) y}{6}\right) \\
& =\frac{4}{12}+\frac{8 y}{6}=\frac{4 y+1}{3}
\end{aligned}
$$

- Otherwise, $f_{Y}(y)=0$.

Independence in rectangle example

Summary of formulas

$f_{X, Y}(x, y)= \begin{cases}\frac{x+4 y}{6} & \text { inside rectangle: } \\ 0 \leqslant x \leqslant 2 \text { and } 0 \leqslant y \leqslant 1 \\ 0 & \text { outside rectangle }\end{cases}$

$$
f_{X}(x)=\left\{\begin{array}{ll}
\frac{x+2}{6} & \text { if } 0 \leqslant x \leqslant 2 \\
0 & \text { otherwise }
\end{array} \quad f_{Y}(y)= \begin{cases}\frac{4 y+1}{3} & \text { if } 0 \leqslant y \leqslant 1 \\
0 & \text { otherwise }\end{cases}\right.
$$

Check independence

$$
\begin{aligned}
f_{X}(x) \cdot f_{Y}(y) & = \begin{cases}\frac{(x+2)(4 y+1)}{18} & \text { if } 0 \leqslant x \leqslant 2 \text { and } 0 \leqslant y \leqslant 1 \\
0 & \text { otherwise }\end{cases} \\
& \neq f_{X, Y}(x, y), \text { so } X \text { and } Y \text { are dependent. }
\end{aligned}
$$

Joint Cumulative Distribution Function (cdf)

- The joint cumulative distribution function (cdf) for two random variables X, Y is

$$
F_{X, Y}(x, y)=P(X \leqslant x, Y \leqslant y) .
$$

- For multiple random variables, the formula is similar.
- As an integral:

$$
\begin{aligned}
F_{X, Y}(x, y) & =P(X \leqslant x, Y \leqslant y) \\
& =\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(u, v) d v d u \\
& =\int_{-\infty}^{y} \int_{-\infty}^{x} f_{X, Y}(u, v) d u d v
\end{aligned}
$$

- Since we used (x, y) in the limits of the integral, the integration variables had to be renamed; here, we used (u, v) instead.
Alternatively, some people prefer to do it the other way around:
$F_{X, Y}(u, v)=P(X \leqslant u, Y \leqslant v)=\int_{-\infty}^{v} \int_{-\infty}^{u} f_{X, Y}(x, y) d x d y$.

Joint cdf in rectangle example

$$
f_{X, Y}(x, y)= \begin{cases}\frac{x+4 y}{6} & \text { inside rectangle: } \\ & 0 \leqslant x \leqslant 2 \text { and } 0 \leqslant y \leqslant 1 \\ 0 & \text { outside rectangle }\end{cases}
$$

- Consider (x, y) inside the rectangle:

$$
F_{X, Y}(x, y)=\int_{0}^{x} \int_{0}^{y} \frac{u+4 v}{6} d v d u
$$

- Inside integral:

$$
\int_{0}^{y} \frac{u+4 v}{6} d v=\left.\frac{u v+2 v^{2}}{6}\right|_{v=0} ^{v=y}=\frac{u(y-0)+2\left(y^{2}-0^{2}\right)}{6}=\frac{u y+2 y^{2}}{6}
$$

- Outside integral:

$$
F_{X, Y}(x, y)=\int_{0}^{x} \frac{u y+2 y^{2}}{6} d u=\left.\left(\frac{u^{2} y}{12}+\frac{u y^{2}}{3}\right)\right|_{u=0} ^{u=x}=\frac{x^{2} y}{12}+\frac{x y^{2}}{3}
$$

Differentiating the cdf

- Evaluate

$$
\frac{\partial^{2}}{\partial x \partial y} F_{X, Y}(x, y)=\frac{\partial}{\partial x}\left(\frac{\partial}{\partial y} F_{X, Y}(x, y)\right)
$$

- Inside derivative:

$$
\frac{\partial}{\partial y} F_{X, Y}(x, y)=\frac{\partial}{\partial y}\left(\frac{x^{2} y}{12}+\frac{x y^{2}}{3}\right)=\frac{x^{2}}{12}+\frac{2 x y}{3}
$$

- Outside derivative:

$$
\frac{\partial^{2}}{\partial x \partial y} F_{X, Y}(x, y)=\frac{\partial}{\partial x}\left(\frac{x^{2}}{12}+\frac{2 x y}{3}\right)=\frac{x}{6}+\frac{2 y}{3}=\frac{x+4 y}{6}=f_{X, Y}(x, y)
$$

- In general, the cdf is the double integral of the pdf with respect to x and y, and inversely, the pdf is the double derivative of the cdf with respect to x and y.

Joint cdf in rectangle example

- The pdf $f_{X, Y}(x, y)=(x+4 y) / 6$ is nonzero only in the blue rectangle.
- The region $\leqslant(x, y)$ can intercept the rectangle in different ways, depending on where (x, y) is in relation to the rectangle.

- If $x<0$ or $y<0$, then the pdf is 0 in the whole integration region, so $F_{X, Y}(x, y)=0$.
This satisfies $f_{X, Y}(x, y)=\frac{\partial^{2}}{\partial x \partial y} F_{X, Y}(x, y)=0$.

Remaining cases: In this example, when (x, y) is right of and/or above the rectangle, the intercepted region becomes the cdf of another point: Right: If $x>2$ and $0 \leqslant y \leqslant 1$

$$
F_{X, Y}(x, y)=F_{X, Y}(2, y)=\frac{4 y}{12}+\frac{2 y^{2}}{3}=\frac{y+2 y^{2}}{3}
$$

Above: If $y>1$ and $0 \leqslant x \leqslant 2$

$$
F_{X, Y}(x, y)=F_{X, Y}(x, 1)=\frac{x^{2}}{12}+\frac{x}{3}=\frac{x^{2}+4 x}{12}
$$

Above and right: If $x>2$ and $y>1$

$$
F_{X, Y}(x, y)=F_{X, Y}(2,1)=\frac{2^{2} \cdot 1}{12}+\frac{2 \cdot 1}{3}=1
$$

In all of these, $f_{X, Y}(x, y)=\frac{\partial^{2}}{\partial x \partial y} F_{X, Y}(x, y)=0$.

Probability of an event

Evaluate $P(Y>3 X)$ in the rectangle example:

- Compute $\iint_{D} f_{X, Y}(x, y) d A=\iint_{D} \frac{x+4 y}{6} d A$ over the shaded triangle, D.
- Can use x-slices or y-slices. Both give the same final answer. x-slices are left as an exercize for you. The y-slices are:

One y-slice for each $0 \leqslant y \leqslant 1$. It runs over $0 \leqslant x \leqslant y / 3$.

- The integral is

$$
P(Y>3 X)=\int_{0}^{1} \int_{0}^{y / 3} \frac{x+4 y}{6} d x d y
$$

Probability of an event

$$
P(Y>3 X)=\int_{0}^{1} \int_{0}^{y / 3} \frac{x+4 y}{6} d x d y
$$

- Inside integral:

$$
\begin{aligned}
\int_{0}^{y / 3} \frac{x+4 y}{6} d x & =\left.\left(\frac{x^{2}}{12}+\frac{4 x y}{6}\right)\right|_{x=0} ^{x=y / 3} \\
& =\frac{(y / 3)^{2}-0^{2}}{12}+\frac{4(y / 3) y}{6}=\frac{y^{2}}{108}+\frac{4 y^{2}}{18}=\frac{25 y^{2}}{108}
\end{aligned}
$$

- Outside integral:

$$
P(Y>3 X)=\int_{0}^{1} \frac{25 y^{2}}{108} d y=\left.\frac{25 y^{3}}{324}\right|_{0} ^{1}=\frac{25\left(1^{3}-0^{3}\right)}{324}=\frac{\mathbf{2 5}}{\mathbf{3 2 4}}
$$

Conditional probability example \#1

$P(A \mid B)$ where A and B have the same dimension as sample space (2D in this example)
Evaluate $P\left(\left.Y>\frac{1}{2} \right\rvert\, X<1\right)$ in the rectangle example:

- This is $1-P\left(\left.Y \leqslant \frac{1}{2} \right\rvert\, X<1\right)$. We have:

$$
P\left(\left.Y \leqslant \frac{1}{2} \right\rvert\, X<1\right)=\frac{P\left(Y \leqslant \frac{1}{2} \text { and } X<1\right)}{P(X<1)}=\frac{F_{X, Y}(1,1 / 2)}{F_{X}(1)}
$$

- Recall that inside the rectangle, we have

$$
F_{X, Y}(x, y)=\frac{x^{2} y}{12}+\frac{x y^{2}}{3}
$$

and we used tricks to evaluate it outside the rectangle.

- $F_{X, Y}(1,1 / 2)=\frac{\left(1^{2}\right)(1 / 2)}{12}+\frac{(1)(1 / 2)^{2}}{3}=\frac{1}{24}+\frac{1}{12}=\frac{3}{24}=\frac{1}{8}$
- $F_{X}(1)=F_{X, Y}(1, \infty)=F_{X, Y}(1,1)=\frac{\left(1^{2}\right)(1)}{12}+\frac{(1)\left(1^{2}\right)}{3}=\frac{1}{12}+\frac{1}{3}=\frac{5}{12}$
- Plug these into the above formulas to get

$$
\begin{aligned}
P\left(\left.Y>\frac{1}{2} \right\rvert\, X<1\right) & =1-P\left(\left.Y \leqslant \frac{1}{2} \right\rvert\, X<1\right)=1-\frac{F_{X, Y}(1,1 / 2)}{F_{X}(1)} \\
& =1-\frac{1 / 8}{5 / 12}=1-\frac{3}{10}=\frac{7}{10}
\end{aligned}
$$

Conditional probability example \#2

 $P(A \mid B)$ where B has smaller dimension than the sample spaceEvaluate $P\left(\left.Y>\frac{1}{2} \right\rvert\, X=1\right)$ in the rectangle example:

- $\frac{P\left(Y>\frac{1}{2} \text { and } X=1\right)}{P(X=1)}=\frac{0}{0}$ does not work.
- In $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$, both $A \cap B$ and B are 1D subspaces of a 2D sample space, so their probabilities are 0 .
- Redo this as ratio of probabilities in 1D.

Conditional probability example \#2

$P(A \mid B)$ where B has smaller dimension than the sample space

- Define the conditional probability density at $X=x$:

$$
f_{Y}(y \mid X=x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}
$$

- For a given value of x, this is a function of varying y.
- It's proportional to $f_{X, Y}(x, y)$ but is renormalized so that the total probability as y varies in the strip $X=x$ is 1 :

$$
\int_{-\infty}^{\infty} f_{Y}(y \mid X=x) d y=\int_{-\infty}^{\infty} \frac{f_{X, Y}(x, y)}{f_{X}(x)} d y=\frac{\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y}{f_{X}(x)}=\frac{f_{X}(x)}{f_{X}(x)}=1
$$

Conditional probability example \#2

$P(A \mid B)$ where B has smaller dimension than the sample space
Evaluate $P\left(\left.Y>\frac{1}{2} \right\rvert\, X=1\right)$ in the rectangle example:

- The conditional probability density at $X=x$ is

$$
f_{Y}(y \mid X=x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}
$$

- In the rectangle example, for x and y within the rectangle:

$$
\begin{aligned}
f_{Y}(y \mid X=x) & =\frac{f_{X, Y}(x, y)}{f_{X}(x)}=\frac{(x+4 y) / 6}{(x+2) / 6}=\frac{x+4 y}{x+2} \\
f_{Y}(y \mid X=1) & =\frac{1+4 y}{3} \\
P\left(\left.Y>\frac{1}{2} \right\rvert\, X=1\right) & =\int_{1 / 2}^{\infty} f_{Y}(y \mid X=1) d y=\int_{1 / 2}^{1} \frac{1+4 y}{3} d y=\left.\frac{y+2 y^{2}}{3}\right|_{y=1 / 2} ^{y=1} \\
& =\frac{1-(1 / 2)}{3}+\frac{2\left(1^{2}-(1 / 2)^{2}\right)}{3}=\frac{1 / 2}{3}+\frac{2(3 / 4)}{3}=\frac{\mathbf{2}}{\mathbf{3}}
\end{aligned}
$$

