0. (1 point) Carefully read and complete the instructions on this exam and any additional instructions announced during the exam.

1. (6 points) Consider the vectors \(\vec{v} = 2i + j - 2k \) and \(\vec{w} = i + 2j + 2k \).
 (a) Compute \(\vec{v} \times \vec{w} \).
 (b) Determine the area of the parallelogram spanned by \(\vec{v} \) and \(\vec{w} \).
 (c) Find a vector that is orthogonal to both \(\vec{v} \) and \(\vec{v} \times \vec{w} \).

2. (6 points) Let \(P = (0, 2, -1) \) and \(Q = (-3, 1, 0) \) be two points in \(\mathbb{R}^3 \).
 (a) Find a vector parameterization for the line that passes through \(P \) and \(Q \).
 (b) Find an equation for the plane orthogonal to the line passing through \(P \) and \(Q \) that passes through the point \(Q \).

3. (6 points) Evaluate \(\lim_{(x,y) \to (0,0)} \frac{2xy}{x^2 + y^2} \) or explain why the limit does not exist.

4. (6 points) Let \(\vec{u} \) and \(\vec{v} \) be two unit vectors such that \(\|\vec{u} + \vec{v}\| = \frac{2}{3} \). Find \(\|\vec{u} - \vec{v}\| \).

5. (6 points) Determine if the lines given by these vector parameteric formulas intersect. If so, find the point where they intersect.
 \[\vec{r}_1(t) = \langle -9, 6, -8 \rangle + t \langle 4, -1, 3 \rangle \quad \text{and} \quad \vec{r}_2(t) = \langle 7, 0, 2 \rangle + t \langle 2, -1, 1 \rangle \]