Markov chains and the number of occurrences of a word in a sequence
(4.5–4.9, 11.1,2,4,6)
Locating overlapping occurrences of a word

- Consider a (long) single-stranded nucleotide sequence \(\tau = \tau_1 \ldots \tau_N \) and a (short) word \(w = w_1 \ldots w_k \), e.g., \(w = \text{GAGA} \).

```plaintext
for i = 1 to N-3 {
    if (\( \tau_i \tau_{i+1} \tau_{i+2} \tau_{i+3} == \text{GAGA} \)) {
        ...
    }
}
```

- The above scan takes up to \(\approx 4N \) comparisons to locate all occurrences of \(\text{GAGA} \) (\(kN \) comparisons for \(w \) of length \(k \)).

- A **finite state automaton** (FSA) is a “machine” that can locate all occurrences while only examining each letter of \(\tau \) once.
The *states* are the nodes \emptyset, G, GA, GAG, GAGA (prefixes of w). For $w = w_1w_2 \cdots w_k$, there are $k + 1$ states (one for each prefix).

- Start in the state \emptyset (shown on figure as \emptyset).
- Scan $\tau = \tau_1\tau_2 \cdots \tau_N$ one character at a time left to right.
- **Transition edges:** When examining τ_j, move from the current state to the next state according to which edge τ_j is on.
 - For each node $u = w_1 \cdots w_r$ and each letter $x = A, C, G, T$, determine the longest suffix s (possibly \emptyset) of $w_1 \cdots w_rx$ that’s among the states.
 - Draw an edge $u \xrightarrow{x} s$

The number of times we are in the state GAGA is the desired count of number of occurrences.
Overlapping occurrences of GAGA in
\[\tau = \text{CAGAGGTCGAGAGT...} \]

<table>
<thead>
<tr>
<th>Time</th>
<th>State at (t)</th>
<th>(\tau_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>G</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>GA</td>
<td>G</td>
</tr>
<tr>
<td>6</td>
<td>GAG</td>
<td>G</td>
</tr>
<tr>
<td>7</td>
<td>G</td>
<td>T</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>State at (t)</th>
<th>(\tau_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>0</td>
<td>G</td>
</tr>
<tr>
<td>10</td>
<td>G</td>
<td>A</td>
</tr>
<tr>
<td>11</td>
<td>GA</td>
<td>G</td>
</tr>
<tr>
<td>12</td>
<td>GAG</td>
<td>A</td>
</tr>
<tr>
<td>13</td>
<td>GAGA</td>
<td>G</td>
</tr>
<tr>
<td>14</td>
<td>GAG</td>
<td>T</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>...</td>
</tr>
</tbody>
</table>

Prof. Tesler
Markov Chains
Math 283 / Fall 2018
Non-overlapping occurrences of $GAGA$

For non-overlapping occurrences of w:
- Replace the outgoing edges from w by copies of the outgoing edges from \emptyset.

On previous slide, the time $13 \to 14$ transition $GAGA \xrightarrow{G} GAG$ changes to $GAGA \xrightarrow{G} G$.
Motif \{GAGA, GTGA\}, overlaps permitted

- **States:** All prefixes of all words in the motif. If a prefix occurs multiple times, only create one node for it.
- **Transition edges:** they may jump from one word of the motif to another.
 - \(\text{GTGA} \xrightarrow{G} \text{GAG}\).
- Count the number of times we reach the states for any words in the motif (GAGA or GTGA).
A Markov chain is similar to a finite state machine, but incorporates probabilities.

Let S be a set of “states.”

We will take S to be a discrete finite set, such as $S = \{1, 2, \ldots, s\}$.

Let $t = 1, 2, \ldots$ denote the “time.”

Let X_1, X_2, \ldots denote a sequence of random variables, values $\in S$.

The X_t’s form a (first order) Markov chain if they obey these rules

1. The probability of being in a certain state at time $t + 1$ only depends on the state at time t, not on any earlier states:
 \[
P(X_{t+1} = x_{t+1} | X_1 = x_1, \ldots, X_t = x_t) = P(X_{t+1} = x_{t+1} | X_t = x_t)
 \]

2. The probability of transitioning from state i at time t to state j at time $t + 1$ only depends on i and j, but not on the time t:
 \[
P(X_{t+1} = j | X_t = i) = p_{ij} \text{ at all times } t
 \]
 for some values p_{ij}, which form an $s \times s$ transition matrix.
The transition matrix, P_1, of the Markov chain $M1$ is

<table>
<thead>
<tr>
<th>From state</th>
<th>To state 1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: 0</td>
<td>$p_A + p_C + p_T$</td>
<td>p_G</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2: G</td>
<td>$p_C + p_T$</td>
<td>p_G</td>
<td>p_A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3: GA</td>
<td>$p_A + p_C + p_T$</td>
<td>0</td>
<td>0</td>
<td>p_G</td>
<td>0</td>
</tr>
<tr>
<td>4: GAG</td>
<td>$p_C + p_T$</td>
<td>p_G</td>
<td>0</td>
<td>0</td>
<td>p_A</td>
</tr>
<tr>
<td>5: GAGA</td>
<td>$p_A + p_C + p_T$</td>
<td>0</td>
<td>0</td>
<td>p_G</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
\begin{bmatrix}
P_{11} & P_{12} & P_{13} & P_{14} & P_{15} \\
P_{21} & P_{22} & P_{23} & P_{24} & P_{25} \\
P_{31} & P_{32} & P_{33} & P_{34} & P_{35} \\
P_{41} & P_{42} & P_{43} & P_{44} & P_{45} \\
P_{51} & P_{52} & P_{53} & P_{54} & P_{55}
\end{bmatrix}
\]

- Notice that the entries in each row sum up to $p_A + p_C + p_G + p_T = 1$.
- A matrix with all entries ≥ 0 and all row sums equal to 1 is called a stochastic matrix.
- The transition matrix of a Markov chain is always stochastic.
- All row sums $= 1$ can be written

\[
P \vec{1} = \vec{1}
\]

where $\vec{1} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$

so $\vec{1}$ is a right eigenvector of P with eigenvalue 1.
Transition matrices for GAGA

Edge labels are replaced by probabilities, e.g., \(p_C + p_T \).

The matrices are shown for the case that all nucleotides have equal probabilities 1/4.

\(P2 \) (no overlaps) is obtained from \(P1 \) (overlaps allowed) by replacing the last row with a copy of the first row.
Other applications of automata

- Automata / state machines are also used in other applications in Math and Computer Science. The transition weights may be defined differently, and the matrices usually aren’t stochastic.

- **Combinatorics:** Count walks through the automaton (instead of getting their probabilities) by setting transition weights $u \xrightarrow{x} s$ to 1.

- **Computer Science (formal languages, classifiers, . . .):** Does the string τ contain GAGA? Output 1 if it does, 0 otherwise.
 - Modify $M1$: remove the outgoing edges on GAGA.
 - On reaching state GAGA, terminate with output 1.
 - If the end of τ is reached, terminate with output 0.
 - This is called a deterministic finite acceptor (DFA).

- **Markov chains:** Instead of considering a specific string τ, we’ll compute probabilities, expected values, . . . over the sample space of all strings of length n.
A Markov chain is \(k \)-th order if the probability of \(X_t = i \) depends on the values of \(X_{t-1}, \ldots, X_{t-k} \). It can be converted to a first order Markov chain by making new states that record more history.

Positional independence: Instead of a null hypothesis that a DNA sequence is generated by repeated rolls of a biased four-sided die, we could use a Markov chain. The simplest is a one-step transition matrix

\[
P = \begin{bmatrix}
p_{AA} & p_{AC} & p_{AG} & p_{AT} \\
p_{CA} & p_{CC} & p_{CG} & p_{CT} \\
p_{GA} & p_{GC} & p_{GG} & p_{GT} \\
p_{TA} & p_{TC} & p_{TG} & p_{TT}
\end{bmatrix}
\]

\(P \) could be the same at all positions. In a coding region, it could be different for the first, second, and third positions of codons.

Nucleotide evolution: There are models of random point mutations over the course of evolution concerning Markov chains with the form \(P \) (same as above) in which \(X_t \) is the state \(A, C, G, T \) of the nucleotide at a given position in a sequence at time (generation) \(t \).
Questions about Markov chains

1. What is the probability of being in a particular state after n steps?
2. What is the probability of being in a particular state as $n \to \infty$?
3. What is the “reverse” Markov chain?
4. If you are in state i, what is the expected number of time steps until the next time you are in state j? What is the variance of this? What is the complete probability distribution?
5. Starting in state i, what is the expected number of visits to state j before reaching state k?
To compute the probability for going from state i at time t to state j at time $t + 2$, consider all the states it could go through at time $t + 1$:

\[
P(X_{t+2} = j|X_t = i) = \sum_r P(X_{t+1} = r|X_t = i)P(X_{t+2} = j|X_{t+1} = r, X_t = i)
\]

\[
= \sum_r P(X_{t+1} = r|X_t = i)P(X_{t+2} = j|X_{t+1} = r)
\]

\[
= \sum_r P_{ir}P_{rj} = (P^2)_{ij}
\]
Transition probabilities after n steps

For $n \geq 0$, the transition matrix from time t to time $t + n$ is P^n:

$$P(X_{t+n} = j|X_t = i) = \sum_{r_1, \ldots, r_{n-1}} P(X_{t+1} = r_1|X_t = i)P(X_{t+2} = r_2|X_{t+1} = r_1) \cdots$$

$$= \sum_{r_1, \ldots, r_{n-1}} P_i r_1 P_{r_1 r_2} \cdots P_{r_{n-1}j} = (P^n)_{ij}$$

(sum over possible states r_1, \ldots, r_{n-1} at times $t + 1, \ldots, t + (n - 1)$)
State probability vector

- \(\alpha_i(t) = P(X_t = i) \) is the probability of being in state \(i \) at time \(t \).

- Column vector \(\vec{\alpha}(t) = \begin{pmatrix} \alpha_1(t) \\ \vdots \\ \alpha_s(t) \end{pmatrix} \)

 or transpose it to get a row vector \(\vec{\alpha}(t)' = (\alpha_1(t), \ldots, \alpha_s(t)) \)

- The probabilities at time \(t + n \) are

 \[
 \alpha_j(t + n) = P(X_{t+n} = j|\vec{\alpha}(t)) = \sum_i P(X_{t+n} = j|X_t = i)P(X_t = i) \\
 = \sum_i \alpha_i(t)(P^n)_{ij} = (\vec{\alpha}(t)'P^n)_j
 \]

 so \(\vec{\alpha}(t + n)' = \vec{\alpha}(t)'P^n \) (row vector times matrix)

 or equivalently, \((P')^n \vec{\alpha}(t) = \vec{\alpha}(t + n) \) (matrix times column vector).
State vector after \(n \) steps for GAGA; \(P = P1 \)

\[
P = \begin{bmatrix}
\frac{3}{4} & \frac{1}{4} & 0 & 0 & 0 \\
\frac{1}{2} & \frac{1}{4} & \frac{1}{4} & 0 & 0 \\
\frac{3}{4} & 0 & 0 & \frac{1}{4} & 0 \\
\frac{1}{2} & \frac{1}{4} & 0 & 0 & \frac{1}{4} \\
\frac{3}{4} & 0 & 0 & \frac{1}{4} & 0
\end{bmatrix}
\]

\[
P^2 = \begin{bmatrix}
\frac{11}{16} & \frac{1}{4} & \frac{1}{16} & 0 & 0 \\
\frac{11}{16} & \frac{3}{16} & \frac{1}{16} & \frac{1}{16} & 0 \\
\frac{11}{16} & \frac{1}{4} & 0 & 0 & \frac{1}{16} \\
\frac{11}{16} & \frac{3}{16} & \frac{1}{16} & \frac{1}{16} & 0 \\
\frac{11}{16} & \frac{1}{4} & 0 & 0 & \frac{1}{16}
\end{bmatrix}
\]

\[
(P')^2 = \begin{bmatrix}
\frac{11}{16} & \frac{11}{16} & \frac{11}{16} & \frac{11}{16} & \frac{11}{16} \\
\frac{1}{4} & \frac{3}{16} & \frac{1}{16} & \frac{3}{16} & \frac{1}{16} \\
\frac{1}{16} & \frac{1}{16} & 0 & \frac{1}{16} & 0 \\
0 & \frac{1}{16} & 0 & \frac{1}{16} & 0 \\
0 & 0 & \frac{1}{16} & 0 & \frac{1}{16}
\end{bmatrix}
\]

- At \(t = 10 \), suppose \(\frac{1}{3} \) chance of being in the 1\(^{st} \) state; \(\frac{2}{3} \) chance of being in the 2\(^{nd} \) state; and no chance of other states:
 \[
 \vec{\alpha}(10)' = (\frac{1}{3}, \frac{2}{3}, 0, 0, 0).
 \]

- Time \(t = 12 \) is \(n = 12 - 10 = 2 \) steps later:
 \[
 \vec{\alpha}(12)' = (\frac{1}{3}, \frac{2}{3}, 0, 0, 0)P^2 = (\frac{11}{16}, \frac{5}{24}, \frac{1}{16}, \frac{1}{24}, 0)
 \]

- Alternately:
 \[
 \vec{\alpha}(10) = \begin{pmatrix}
 1/3 \\
 2/3 \\
 0 \\
 0 \\
 0
\end{pmatrix}
 \vec{\alpha}(2) = (P')^2\vec{\alpha}(10) = \begin{pmatrix}
 11/16 \\
 5/24 \\
 1/16 \\
 1/24 \\
 0
\end{pmatrix}
 \]
Transition probabilities after \(n \) steps for \textit{GAGA}; \(P = P^1 \)

\[
P^0 = I = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad \quad \quad \quad P^1 = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} & 0 & 0 & 0 \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 & 0 \\
\frac{3}{4} & 0 & 0 & \frac{1}{4} & 0 \\
\frac{1}{2} & \frac{1}{4} & 0 & 0 & \frac{1}{4} \\
\frac{3}{4} & 0 & 0 & \frac{1}{4} & 0 \end{bmatrix} \quad \quad P^2 = \begin{bmatrix} \frac{11}{16} & \frac{1}{4} & \frac{1}{16} & 0 & 0 \\
\frac{11}{16} & \frac{3}{16} & \frac{1}{16} & \frac{1}{16} & 0 \\
\frac{11}{16} & \frac{1}{4} & 0 & 0 & \frac{1}{16} \\
\frac{11}{16} & \frac{3}{16} & \frac{1}{16} & \frac{1}{16} & 0 \\
\frac{11}{16} & \frac{1}{4} & 0 & 0 & \frac{1}{16} \end{bmatrix} \quad \quad P^3 = \begin{bmatrix} \frac{11}{16} & \frac{15}{64} & \frac{1}{16} & \frac{1}{64} & 0 \\
\frac{11}{16} & \frac{15}{64} & \frac{3}{64} & \frac{1}{64} & 0 \\
\frac{11}{16} & \frac{15}{64} & \frac{1}{64} & \frac{1}{64} & 0 \\
\frac{11}{16} & \frac{15}{64} & \frac{3}{64} & \frac{1}{64} & 0 \\
\frac{11}{16} & \frac{15}{64} & \frac{1}{64} & \frac{1}{64} & 0 \end{bmatrix} \quad \quad P^4 = \begin{bmatrix} \frac{11}{16} & \frac{15}{64} & \frac{15}{256} & \frac{1}{64} & \frac{1}{256} \\
\frac{11}{16} & \frac{15}{64} & \frac{15}{256} & \frac{1}{64} & \frac{1}{256} \\
\frac{11}{16} & \frac{15}{64} & \frac{15}{256} & \frac{1}{64} & \frac{1}{256} \\
\frac{11}{16} & \frac{15}{64} & \frac{15}{256} & \frac{1}{64} & \frac{1}{256} \\
\frac{11}{16} & \frac{15}{64} & \frac{15}{256} & \frac{1}{64} & \frac{1}{256} \end{bmatrix} \quad \quad P^n = P^4 \text{ for } n \geq 5
\]

- Regardless of the starting state, the probabilities of being in states 1, \ldots, 5 at time \(t \) (when \(t \) is large enough) are \(\frac{11}{16}, \frac{15}{64}, \frac{15}{256}, \frac{1}{64}, \frac{1}{256} \).
- Usually \(P^n \) just approaches a limit asymptotically as \(n \) increases, rather than reaching it. We’ll see other examples later (like \(P^2 \)).
Matrix powers in Matlab and R

Matlab

```matlab
>> P1 = [
[ 3/4, 1/4, 0, 0, 0 ]; % G
[ 2/4, 1/4, 1/4, 0, 0 ]; % G
[ 3/4, 0, 0, 1/4, 0 ]; % GA
[ 2/4, 1/4, 0, 0, 1/4 ]; % GAG
[ 3/4, 0, 0, 1/4, 0 ]; % GAGA
];

P1 =
0.7500 0.2500 0 0 0
0.5000 0.2500 0.2500 0 0
0.7500 0 0 0.2500 0
0.5000 0.2500 0 0 0.2500
0.7500 0 0 0.2500 0

>> P1 * P1 % or P1^2
ans =
0.6875 0.2500 0.0625 0 0
0.6875 0.1875 0.0625 0.0625 0
0.6875 0.2500 0 0 0.0625
0.6875 0.1875 0.0625 0.0625 0
0.6875 0.2500 0 0 0.0625
```

R

```r
> P1 = rbind(
+ c(3/4,1/4, 0, 0, 0), #
+ c(2/4,1/4,1/4, 0, 0), # G
+ c(3/4, 0, 0,1/4, 0), # GA
+ c(2/4,1/4, 0, 0,1/4), # GAG
+ c(3/4, 0, 0,1/4, 0) # GAGA
+ )

> P1
[1,] 0.75 0.25 0.00 0.00 0.00
[2,] 0.50 0.25 0.25 0.00 0.00
[3,] 0.75 0.00 0.00 0.25 0.00
[4,] 0.50 0.25 0.00 0.00 0.25
[5,] 0.75 0.00 0.00 0.25 0.00

> P1 %*% P1
[1,] 0.6875 0.2500 0.0625 0.0000 0.0000
[2,] 0.6875 0.1875 0.0625 0.0625 0.0000
[3,] 0.6875 0.2500 0.0000 0.0000 0.0625
[4,] 0.6875 0.1875 0.0625 0.0625 0.0000
[5,] 0.6875 0.2500 0.0000 0.0000 0.0625
```

Note: R doesn’t have a built-in matrix power function. The > and + symbols above are prompts, not something you enter.
Stationary distribution, a.k.a. steady state distribution

- If \(P \) is irreducible and aperiodic (these will be defined soon) then \(P^n \) approaches a limit with this format as \(n \to \infty \):

\[
\lim_{n \to \infty} P^n = \begin{bmatrix}
\varphi_1 & \varphi_2 & \cdots & \varphi_s \\
\varphi_1 & \varphi_2 & \cdots & \varphi_s \\
\vdots & \vdots & \ddots & \vdots \\
\varphi_1 & \varphi_2 & \cdots & \varphi_s
\end{bmatrix}
\]

- In other words, no matter what the starting state, the probability of being in state \(j \) after \(n \) steps approaches \(\varphi_j \).

- The row vector \(\vec{\varphi}' = (\varphi_1, \ldots, \varphi_s) \) is called the **stationary distribution** of the Markov chain.

- It is “stationary” because these probabilities stay the same from one time to the next; in matrix notation, \(\vec{\varphi}' P = \vec{\varphi}' \), or \(P' \vec{\varphi} = \vec{\varphi} \).

- So \(\vec{\varphi}' \) is a left eigenvector of \(P \) with eigenvalue \(1 \).

- Since it represents probabilities of being in each state, the components of \(\vec{\varphi} \) add up to 1.
Solve $\vec{\phi}'P = \vec{\phi}'$, or $(\varphi_1, \ldots, \varphi_5)P = (\varphi_1, \ldots, \varphi_5)$:

- $\varphi_1 = \frac{3}{4} \varphi_1 + \frac{1}{4} \varphi_2 + \frac{3}{4} \varphi_3 + \frac{1}{2} \varphi_4 + \frac{3}{4} \varphi_5$
- $\varphi_2 = \frac{1}{4} \varphi_1 + \frac{1}{4} \varphi_2 + 0 \varphi_3 + \frac{1}{4} \varphi_4 + 0 \varphi_5$
- $\varphi_3 = 0 \varphi_1 + \frac{1}{4} \varphi_2 + 0 \varphi_3 + 0 \varphi_4 + 0 \varphi_5$
- $\varphi_4 = 0 \varphi_1 + 0 \varphi_2 + \frac{1}{4} \varphi_3 + 0 \varphi_4 + \frac{1}{4} \varphi_5$
- $\varphi_5 = 0 \varphi_1 + 0 \varphi_2 + 0 \varphi_3 + \frac{1}{4} \varphi_4 + 0 \varphi_5$

and the total probability equation $\varphi_1 + \varphi_2 + \varphi_3 + \varphi_4 + \varphi_5 = 1$.

- This is 6 equations in 5 unknowns, so it is overdetermined.
- Actually, the first 5 equations are underdetermined; they add up to $\varphi_1 + \cdots + \varphi_5 = \varphi_1 + \cdots + \varphi_5$.

Knock out the $\varphi_5 = \cdots$ equation and solve the rest of them to get $\vec{\varphi}' = (\frac{11}{16}, \frac{15}{64}, \frac{15}{256}, \frac{1}{64}, \frac{1}{256}) \approx (0.6875, 0.2344, 0.0586, 0.0156, 0.0039)$.

Solving equations in Matlab or R
(this method doesn’t use the functions for eigenvectors)

Matlab

```matlab
>> eye(5) # identity
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

>> P1' - eye(5) # transpose minus identity
-0.2500 0.5000 0.7500 0.5000 0.7500
0.2500 -0.7500 0 0.2500 0
0 0.2500 -1.0000 0 0
0 0 0.2500 -1.0000 0.2500
0 0 0 0.2500 -1.0000

>> [P1' - eye(5); 1 1 1 1 1]
-0.2500 0.5000 0.7500 0.5000 0.7500
0.2500 -0.7500 0 0.2500 0
0 0.2500 -1.0000 0 0
0 0 0.2500 -1.0000 0.2500
0 0 0 0.2500 -1.0000
1.0000 1.0000 1.0000 1.0000 1.0000

>> sstate=[P1'-eye(5); 1 1 1 1 1] \ [0 0 0 0 0 1]'
sstate =
0.6875
0.2344
0.0586
0.0156
0.0039
```

R

```r
> diag(1,5) % identity
[1,] 1 0 0 0 0
[2,] 0 1 0 0 0
[3,] 0 0 1 0 0
[4,] 0 0 0 1 0
[5,] 0 0 0 0 1

> t(P1) - diag(1,5) % transpose minus identity
[1,] -0.25 0.50 0.75 0.50 0.75
[2,] 0.25 -0.75 0.00 0.25 0.00
[3,] 0.00 0.25 -1.00 0.00 0.00
[4,] 0.00 0.00 0.25 -1.00 0.25
[5,] 0.00 0.00 0.00 0.25 -1.00

> rbind(t(P1) - diag(1,5), c(1,1,1,1,1))
[1,] -0.25 0.50 0.75 0.50 0.75
[2,] 0.25 -0.75 0.00 0.25 0.00
[3,] 0.00 0.25 -1.00 0.00 0.00
[4,] 0.00 0.00 0.25 -1.00 0.25
[5,] 0.00 0.00 0.00 0.25 -1.00

> sstate = qr.solve(rbind(t(P1) - diag(1,5), c(1,1,1,1,1)),c(0,0,0,0,0,1))

> sstate
[1] 0.68750000 0.23437500 0.05859375 0.01562500
[5] 0.00390625
```
Eigenvalues of P

- A transition matrix is *stochastic*: all entries are ≥ 0 and its row sums are all 1. So
 \[P\vec{1} = \vec{1} \quad \text{where} \quad \vec{1} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \]

- Thus, $\lambda = 1$ is an eigenvalue of P and $\vec{1}$ is a *right eigenvector*. There is also a *left eigenvector* of P with eigenvalue 1:
 \[\vec{w} P = 1 \vec{w} \]
 where \vec{w} is a row vector. Normalize it so its entries add up to 1, to get the *stationary distribution* $\vec{\phi}'$.

- All eigenvalues λ of a stochastic matrix have $|\lambda| \leq 1$.

- An irreducible aperiodic Markov chain has just one eigenvalue $= 1$. The 2nd largest $|\lambda|$ determines how fast P^n converges. For example, if it’s diagonalizable, the spectral decomposition is:
 \[P^n = 1^n M_1 + \lambda_2^n M_2 + \lambda_3^n M_3 + \cdots \]
 but there may be complications (periodic Markov chains, complex eigenvalues, . . .).
A Markov chain is **irreducible** if every state can be reached from every other state after enough steps.

The above example is **reducible** since there are states that cannot be reached from each other: after sufficient time, you are either stuck in state 3, the component \{4, 5, 6, 7\}, or the component \{8, 9, 10\}.
State i has *period* d if the Markov chain can only go from state i to itself in multiples of d steps, where d is the maximum number that satisfies that.

If $d > 1$ then state i is *periodic*.

A Markov chain is *periodic* if at least one state is periodic and is *aperiodic* if no states are periodic.

All states in a component have the same period.

Component $\{4, 5, 6, 7\}$ has period 2 and component $\{8, 9, 10\}$ has period 3, so the Markov chain is periodic.
An **absorbing state** has all its outgoing edges going to itself; e.g., state 3 above.

An irreducible Markov chain with two or more states cannot have any absorbing states.
There are generalizations to infinite numbers of discrete or continuous states and to continuous time.

We will work with Markov chains that are finite, discrete, irreducible, and aperiodic, unless otherwise stated.

For a finite discrete Markov chain on two or more states:

irreducible and aperiodic with no absorbing states

is equivalent to

P or a power of P has all entries greater than 0

and in this case, $\lim_{n \to \infty} P^n$ exists and all its rows are the stationary distribution.
A Markov chain modeling forwards progression of time can be “reversed” to make “predictions” about the past. For example, this is done in models of nucleotide evolution.

The graph of the reverse Markov chain has
- the same nodes as the forwards chain;
- the same edges but reversed directions and new probabilities.
The transition matrix P of the forwards Markov chain was defined so that $P(X_{t+1} = j|X_t = i) = p_{ij}$ at all times t.

Assume the forwards machine has run long enough to reach the stationary distribution, $P(X_t = i) = \varphi_i$.

The reverse Markov chain has transition matrix Q, where

$$q_{ij} = P(X_t = j|X_{t+1} = i) = \frac{P(X_{t+1} = i|X_t = j)P(X_t = j)}{P(X_{t+1} = i)} = \frac{p_{ji} \varphi_j}{\varphi_i}$$

(Recall Bayes’ Theorem: $P(B|A) = P(A|B)P(B)/P(A)$.)
Stationary distribution of $P1$ is \(\vec{\phi}' = \left(\frac{11}{16}, \frac{15}{64}, \frac{15}{256}, \frac{1}{64}, \frac{1}{256} \right) \)

Example of one entry: The edge 0 \rightarrow GA in the reverse chain has \(q_{13} = p_{31} \frac{\varphi_3}{\varphi_1} = \left(\frac{3}{4} \right) \left(\frac{15}{256} \right) \left/ \left(\frac{11}{16} \right) \right. = \frac{45}{704} \).

This means that in the steady state of the forwards chain, when 0 is entered, there is a probability $\frac{45}{704}$ that the previous state was GA.
Matlab

```
>> d_sstate = diag(sstate)

d_sstate =
  0.6875   0   0   0   0
  0   0.2344   0   0   0
  0   0   0.0586   0   0
  0   0   0   0.0156   0
  0   0   0   0   0.0039

>> Q1 = inv(d_sstate) * P1' * d_sstate

Q1 =
  0.7500   0.1705   0.0639   0.0114   0.0043
  0.7333   0.2500   0   0.0167   0
   0   1.0000   0   0   0
  0   0   0.9375   0   0.0625
  0   0   0   1.0000   0
```

R

```
> d_sstate = diag(sstate)
> Q1 = solve(d_sstate) \%\% t(P1) \%\% d_sstate
```
If $M1$ is in state \emptyset, what is the expected number of steps until the next time it is in state $GAGA$?

More generally, what’s the expected # steps from state i to state j?

- Fix the end state j once and for all. Simultaneously solve for expected # steps from all start states i.
- For $i = 1, \ldots, s$, let N_i be a random variable for the number of steps from state i to the next time in state j.
- **Next time** means that if $i = j$, we count until the next time at state j, with $N_j \geq 1$; we don’t count it as already there in 0 steps.
- We’ll develop systems of equations for $E(N_i)$, $\text{Var}(N_i)$, and $\mathbb{P}_{N_i}(x)$.
Expected time from state i till next time in state j

Fix $j = 5$.

Random variable $N_r =$ # steps from state r to next time in state j.

Dotted paths have no occurrences of state j in the middle.

Expected # steps from state $i = 1$ to $j = 5$ (repeat this for all i):

$$
E(N_1^{(\text{time } t)}) = P_{11} E(N_1^{(\text{time } t+1)}) + 1 + P_{12} E(N_2 + 1)
+ P_{13} E(N_3 + 1) + P_{14} E(N_4 + 1) + P_{15} E(1)
$$

Both N_1's have same distribution, and we can expand $E()$'s:

$$
E(N_1) = \sum_{r : r \neq j} P_{1r} E(N_r) + \sum_r P_{1r} = \left(\sum_{r : r \neq j} P_{1r} E(N_r) \right) + 1
$$
Expected time from state i till next time in state j

- Recall we fixed j, and defined N_i relative to it.
- Start in state i.
- There is a probability P_{ir} of going one step to state r.
- If $r = j$, we are done in one step: $E(N_i \mid 1\text{st step is } i \rightarrow j) = 1$
- If $r \neq j$, the expected number of steps after the first step is $E(N_r)$:

 $$E(N_i \mid 1\text{st step is } i \rightarrow r) = E(N_r + 1) = E(N_r) + 1$$

- Combine with the probability of each value of r:

 $$E(N_i) = P_{ij} \cdot 1 + \sum_{r=1, r\neq j}^s P_{ir}E(N_r + 1) = P_{ij} + \sum_{r=1, r\neq j}^s P_{ir} \cdot (E(N_r) + 1)$$

 $$= \sum_{r=1}^s P_{ir} + \sum_{r=1, r\neq j}^s P_{ir} \cdot E(N_r) = 1 + \sum_{r=1, r\neq j}^s P_{ir} \cdot E(N_r)$$

- Doing this for all s states, $i = 1, \ldots, s$, gives s equations in the s unknowns $E(N_1), \ldots, E(N_s)$.
Expected times between states in M_1: times to state 5

\[E(N_1) = 0 + \frac{3}{4}(E(N_1) + 1) + \frac{1}{4}(E(N_2) + 1) = 1 + \frac{3}{4}E(N_1) + \frac{1}{4}E(N_2) \]
\[E(N_2) = 0 + \frac{1}{2}(E(N_1) + 1) + \frac{1}{4}(E(N_2) + 1) + \frac{1}{4}(E(N_3) + 1) = 1 + \frac{1}{2}E(N_1) + \frac{1}{4}E(N_2) + \frac{1}{4}E(N_3) \]
\[E(N_3) = 0 + \frac{3}{4}(E(N_1) + 1) + \frac{1}{4}(E(N_4) + 1) = 1 + \frac{3}{4}E(N_1) + \frac{1}{4}E(N_4) \]
\[E(N_4) = \frac{1}{4} + \frac{1}{2}(E(N_1) + 1) + \frac{1}{4}(E(N_2) + 1) = 1 + \frac{1}{2}E(N_1) + \frac{1}{4}E(N_2) \]
\[E(N_5) = 0 + \frac{3}{4}(E(N_1) + 1) + \frac{1}{4}(E(N_4) + 1) = 1 + \frac{3}{4}E(N_1) + \frac{1}{4}E(N_4) \]

This is 5 equations in 5 unknowns $E(N_1), \ldots, E(N_5)$. Matrix format:

\[
\begin{bmatrix}
-1/4 & 1/4 & 0 & 0 & 0 \\
1/2 & -3/4 & 1/4 & 0 & 0 \\
3/4 & 0 & -1 & 1/4 & 0 \\
1/2 & 1/4 & 0 & -1 & 0 \\
3/4 & 0 & 0 & 1/4 & -1
\end{bmatrix}
\begin{bmatrix}
E(N_1) \\
E(N_2) \\
E(N_3) \\
E(N_4) \\
E(N_5)
\end{bmatrix}
= \begin{bmatrix}
-1 \\
-1 \\
-1 \\
-1 \\
-1
\end{bmatrix}
\]

Zero out j^{th} column of P.
Then subtract 1 from each diagonal entry.

* Matlab and R: Enter matrix C and vector r. Solve $C\vec{x} = \vec{r}$ with

Matlab: \(x=C\backslash r \) or \(x=\text{inv}(C) * r \)
R: \(x=\text{solve}(C,r) \)

* $E(N_1) = 272, E(N_2) = 268, E(N_3) = 256, E(N_4) = 204, E(N_5) = 256$.
Variance and PGF of number of steps between states

- We may compute $E(g(N_i))$ for any function g by setting up recurrences in the same way. For each $i = 1, \ldots, s$:
 \[
 E(g(N_i)) = P_{ij} g(1) + \sum_{r \neq j} P_{ir} E(g(N_r+1)) = \text{expansion depending on } g
 \]

- Variance of N_i's: $\text{Var}(N_i) = E(N_i^2) - (E(N_i))^2$
 \[
 E(N_i^2) = P_{ij} \cdot 1^2 + \sum_{r=1, r \neq j}^s P_{ir} E((N_r+1)^2) = 1 + 2 \sum_{r=1, r \neq j}^s P_{ir} E(N_r) + \sum_{r=1, r \neq j}^s P_{ir} E(N_r^2)
 \]
 Plug in the previous solution of $E(N_1), \ldots, E(N_s)$.
 Then solve the s equations for the s unknowns $E(N_1^2), \ldots, E(N_s^2)$.

- PGF: $P_{N_i}(x) = E(x^{N_i}) = \sum_{n=0}^{\infty} P(N_i = n)x^n$
 \[
 E(x^{N_i}) = P_{ij} \cdot x^1 + \sum_{r=1, r \neq j}^s P_{ir} E(x^{N_r+1}) = P_{ij} \cdot x + \sum_{r=1, r \neq j}^s P_{ir} \cdot x \cdot E(x^{N_r})
 \]
 Solve the s equations for s unknowns $E(x^{N_1}), \ldots, E(x^{N_s})$.
 See the old handout for a worked out example.
Powers of matrices (see separate slides)

- **Sample matrix:** \(P = V D V^{-1} \)

 \[
 P = \begin{bmatrix} 8 & -1 \\ 6 & 3 \end{bmatrix}, \quad V = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad D = \begin{bmatrix} 5 & 0 \\ 0 & 6 \end{bmatrix}, \quad V^{-1} = \begin{bmatrix} -2 & 1 \\ 3/2 & -1/2 \end{bmatrix}
 \]

- \(P^n = (VDV^{-1})(VDV^{-1}) \cdots (VDV^{-1}) = VD^nV^{-1} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5^n & 0 \\ 0 & 6^n \end{bmatrix} \begin{bmatrix} -2 & 1 \\ 3/2 & -1/2 \end{bmatrix} \)

- When a square \((s \times s)\) matrix \(P \) has distinct eigenvalues, it can be **diagonalized**
 \[
 P = V D V^{-1}
 \]

 where \(D \) is a diagonal matrix of the eigenvalues of \(P \) (any order); the columns of \(V \) are right eigenvectors of \(P \) (in same order as \(D \));

 the rows of \(V^{-1} \) are left eigenvectors of \(P \) (in same order as \(D \));

- If any eigenvalues are equal, it may or may not be diagonalizeable, but there is a generalization called **Jordan Canonical Form**, \(P = V J V^{-1} \) giving \(P^n = V J^n V^{-1} \).

 \(J \) has eigenvalues on the diagonal and 1’s and 0’s just above it, and is also easy to raise to powers.
Matrix powers — spectral decomposition (distinct eigenvalues)

Powers of \(P \): \(P^n = (VDV^{-1})(VDV^{-1}) \cdots = VD^nV^{-1} \)

\[
P^n = VD^nV^{-1} = V \begin{bmatrix} 5^n & 0 \\ 0 & 6^n \end{bmatrix} V^{-1} = V \begin{bmatrix} 5^n & 0 \\ 0 & 0 \end{bmatrix} V^{-1} + V \begin{bmatrix} 0 & 0 \\ 0 & 6^n \end{bmatrix} V^{-1}
\]

\[
V \begin{bmatrix} 5^n & 0 \\ 0 & 0 \end{bmatrix} V^{-1} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5^n & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -2 & 1 \\ 1.5 & -0.5 \end{bmatrix} = \begin{bmatrix} (1)(5^n)(-2) & (1)(5^n)(1) \\ (3)(5^n)(-2) & (3)(5^n)(1) \end{bmatrix}
\]

\[
= 5^n \begin{bmatrix} 1 \\ 3 \end{bmatrix} \begin{bmatrix} -2 & 1 \end{bmatrix} = \lambda_1^n \vec{r}_1 \vec{\ell}'_1 = 5^n \begin{bmatrix} -2 & 1 \\ -6 & 3 \end{bmatrix}
\]

\[
V \begin{bmatrix} 0 & 0 \\ 0 & 6^n \end{bmatrix} V^{-1} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 6^n \end{bmatrix} \begin{bmatrix} -2 & 1 \\ 1.5 & -0.5 \end{bmatrix} = \begin{bmatrix} 2(6^n)(1.5) & 2(6^n)(-0.5) \\ 4(6^n)(1.5) & 4(6^n)(-0.5) \end{bmatrix}
\]

\[
= 6^n \begin{bmatrix} 2 \\ 4 \end{bmatrix} \begin{bmatrix} 1.5 & -0.5 \end{bmatrix} = \lambda_2^n \vec{r}_2 \vec{\ell}'_2 = 6^n \begin{bmatrix} 3 & -1 \\ 6 & -2 \end{bmatrix}
\]

Spectral decomposition of \(P^n \):

\[
P^n = VD^nV^{-1} = \lambda_1^n \vec{r}_1 \vec{\ell}'_1 + \lambda_2^n \vec{r}_2 \vec{\ell}'_2 = 5^n \begin{bmatrix} -2 & 1 \\ -6 & 3 \end{bmatrix} + 6^n \begin{bmatrix} 3 & -1 \\ 6 & -2 \end{bmatrix}
\]
Matrices with two or more equal eigenvalues cannot necessarily be diagonalized. *Matlab and R do not give an error or warning.*

The **Jordan Canonical Form** is a generalization that turns into diagonalization when possible, and still works otherwise:

\[P = V J V^{-1} \]

\[J = \begin{bmatrix} B_1 & 0 & 0 & \cdots \\ 0 & B_2 & 0 & \cdots \\ 0 & 0 & B_3 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} \]

\[B_i = \begin{bmatrix} \lambda_i & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & \lambda_i & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \lambda_i & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \lambda_i & 1 \\ 0 & 0 & 0 & 0 & \cdots & 0 & \lambda_i \end{bmatrix} \]

\[P^n = V J^n V^{-1} \] where

\[J^n = \begin{bmatrix} B_1^n & 0 & 0 & \cdots \\ 0 & B_2^n & 0 & \cdots \\ 0 & 0 & B_3^n & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} \]

\[B_i^n = \begin{bmatrix} \lambda_i^n \binom{n}{1} \lambda_i^{n-1} \binom{n}{2} \lambda_i^{n-2} & \cdots & \cdots & \cdots \\ 0 & \lambda_i^n \binom{n}{1} \lambda_i^{n-1} & \cdots & \cdots \\ \vdots & \vdots & \ddots & \ddots \\ 0 & 0 & 0 & \cdots \lambda_i^n \binom{n}{1} \lambda_i^{n-1} \\ 0 & 0 & 0 & \cdots & 0 & \lambda_i^n \end{bmatrix} \]

In applications when repeated eigenvalues are a possibility, it’s best to use the Jordan Canonical Form.
Jordan Canonical Form for $P1$ in Matlab

(R doesn’t currently have JCF available either built-in or as an add-on)

```matlab
» P1 = [
    [ 3/4, 1/4, 0, 0, 0 ]; %
    [ 2/4, 1/4, 1/4, 0, 0 ]; % G
    [ 3/4, 0, 0, 1/4, 0 ]; % GA
    [ 2/4, 1/4, 0, 0, 1/4 ]; % GAG
    [ 3/4, 0, 0, 1/4, 0 ]; % GAGA
];

P1 =
0.7500 0.2500 0 0 0
0.5000 0.2500 0.2500 0 0
0.7500 0 0 0.2500 0
0.5000 0.2500 0 0 0.2500
0.7500 0 0 0.2500 0

» [V1,J1] = jordan(P1)
V1 =
-0.0039 -0.0195 -0.0707 -0.2298 -0.0430
0.0117 0.0430 0.1339 0.4066 -0.0430
-0.0039 0.0430 0.1793 0.5884 -0.0430
0.0117 0.0430 0.3839 1.4066 -0.0430
-0.0039 0.0430 0.1793 1.5884 -0.0430

J1 =
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1

» V1i = inv(V1)
V1i =
0 52.3636 -64.0000 11.6364 0
-16.0000 16.0000 13.0909 -16.0000 2.9091
0 -4.0000 4.0000 4.0000 -4.0000
0 0 -1.0000 0 1.0000
-16.0000 -5.4545 -1.3636 -0.3636 -0.0909

» V1 * J1 * V1i
ans =
0.7500 0.2500 0.0000 0.0000 0.0000
0.5000 0.2500 0.2500 0.0000 0.0000
0.7500 0.0000 0.0000 0.2500 0.0000
0.5000 0.2500 0.0000 0.0000 0.2500
0.7500 0.0000 0.0000 0.2500 0.0000
```
Powers of P_1 using JCF

$P = VJV^{-1}$ gives $P^n = VJ^nV^{-1}$, and J^n is easy to compute:

```matlab
» J1
J1 =
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 1

» J1^2
ans =
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

» J1^3
ans =
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

» J1^4
ans =
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

» J1^5
ans =
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
```

For this matrix, $J^n = J^4$ when $n \geq 4$, so $P^n = VJ^nV^{-1} = VJ^4V^{-1} = P^4$ for $n \geq 4$.
Non-overlapping occurrences of GAGA

$[V2, J2] = \text{jordan}(P2)$

$V2 =$

\[
\begin{bmatrix}
-0.0625 & -0.5170 & -0.1728 & 0.1176 + 0.0294i & 0.1176 - 0.0294i \\
0.1875 & 1.3011 & -0.1728 & -0.3824 + 0.0294i & -0.3824 - 0.0294i \\
-0.0625 & 0.4830 & -0.1728 & 0.1176 - 0.4706i & 0.1176 + 0.4706i \\
0.1875 & 1.3011 & -0.1728 & 0.1176 + 0.0294i & 0.1176 - 0.0294i \\
-0.0625 & 0.4830 & -0.1728 & 0.1176 + 0.4706i & 0.1176 - 0.0294i \\
\end{bmatrix}
\]

$J2 =$

\[
\begin{bmatrix}
0 & 1.0000 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1.0000 & 0 & 0 \\
0 & 0 & 0 & 0 + 0.2500i & 0 \\
0 & 0 & 0 & 0 & 0 - 0.2500i \\
\end{bmatrix}
\]

$V2i = \text{inv}(V2)$

$V2i =$

\[
\begin{bmatrix}
3.2727 & 0 & -0.0000 & 4.0000 & -7.2727 \\
-1.0000 & 0 & 0.0000 & 0 & 1.0000 \\
-3.9787 & -1.3617 & -0.3404 & -0.0851 & -0.0213 \\
0 & -1.0000 & 0 + 1.0000i & 1.0000 & 0 - 1.0000i \\
0 & -1.0000 & 0 - 1.0000i & 1.0000 & 0 + 1.0000i \\
\end{bmatrix}
\]
Non-overlapping occurrences of $\text{GAGA} \rightarrow \text{JCF}$

$$(J2)^n = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}^n \begin{bmatrix} 1^n \\ (i/4)^n \\ (-i/4)^n \end{bmatrix}$$

$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}^0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ \hspace{1cm} $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}^1 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ \hspace{1cm} for $n \geq 2$

- **One eigenvalue = 1.** It’s the third one listed, so the stationary distribution is the third row of $(V2)^{-1}$ normalized:

\[
\text{ans} = \frac{V2i(3,:)}{\text{sum}(V2i(3,:))}
\]

\[
\begin{bmatrix} 0.6875 \\ 0.2353 \\ 0.0588 \\ 0.0147 \\ 0.0037 \end{bmatrix}
\]

- **Two eigenvalues = 0.** The interpretation of one of them is that the first and last rows of $P2$ are equal, so $(1, 0, 0, 0, -1)'$ is a right eigenvector of $P2$ with eigenvalue 0.

- **Two complex eigenvalues, $0 \pm i/4$.** Since $P2$ is real, all complex eigenvalues must come in conjugate pairs.

The eigenvectors also come in conjugate pairs (last 2 columns of $V2$; last 2 rows of $(V2)^{-1}$.)

Prof. Tesler

Markov Chains

Math 283 / Fall 2018 42 / 44
Spectral decomposition with JCF and complex eigenvalues

\[(J2)^n = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}^n \begin{bmatrix} \frac{i}{4} \\ -\frac{i}{4} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}^n \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}^n \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}^n \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \text{for } n \geq 2\]

\[(P2)^n = (V2)(J2)^n(V2)^{-1} \]

\[= \begin{bmatrix} \vec{r}_1 & \vec{r}_2 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}^n \begin{bmatrix} \vec{l}'_1 \\ \vec{l}'_2 \end{bmatrix} + \vec{r}_3 (1)^n \vec{l}'_3 + \vec{r}_4 (i/4)^n \vec{l}'_4 + \vec{r}_5 (-i/4)^n \vec{l}'_5 \]

The first term vanishes when \(n \geq 2\), so when \(n \geq 2\) the format is

\[= 1^n S3 + (i/4)^n S4 + (-i/4)^n S5 = S3 + (i/4)^n S4 + (-i/4)^n S5\]
Spectral decomposition with JCF and complex eigenvalues

For \(n \geq 2 \),

\[(P2)^n = S3 + (i/4)^n S4 + (-i/4)^n S5\]

where

\[
\begin{align*}
S3 &= V2(:,3) * V2i(3,:) \\
&= \begin{pmatrix} 0.6875 & 0.2353 & 0.0588 & 0.0147 & 0.0037 \\ 0.6875 & 0.2353 & 0.0588 & 0.0147 & 0.0037 \\ 0.6875 & 0.2353 & 0.0588 & 0.0147 & 0.0037 \\ 0.6875 & 0.2353 & 0.0588 & 0.0147 & 0.0037 \\ 0.6875 & 0.2353 & 0.0588 & 0.0147 & 0.0037 \end{pmatrix} \\
S4 &= V2(:,4) * V2i(4,:) \\
&= \begin{pmatrix} 0 & -0.1176 + 0.0294i & -0.0294 + 0.1176i & 0.1176 + 0.0294i & 0.0294 + 0.1176i \\ 0 & 0.3824 + 0.0294i & -0.0294 - 0.3824i & -0.3824 + 0.0294i & 0.0294 + 0.3824i \\ 0 & -0.1176 + 0.4706i & 0.4706 + 0.1176i & 0.1176 - 0.4706i & -0.4706 - 0.1176i \\ 0 & -0.1176 - 0.0294i & -0.0294 + 0.1176i & 0.1176 + 0.0294i & 0.0294 - 0.1176i \\ 0 & -0.1176 - 0.0294i & -0.0294 + 0.1176i & 0.1176 + 0.0294i & 0.0294 - 0.1176i \end{pmatrix} \\
S5 &= V2(:,5) * V2i(5,:) \\
&= \begin{pmatrix} 0 & -0.1176 + 0.0294i & -0.0294 - 0.1176i & 0.1176 - 0.0294i & 0.0294 + 0.1176i \\ 0 & 0.3824 - 0.0294i & -0.0294 + 0.3824i & -0.3824 - 0.0294i & 0.0294 - 0.3824i \\ 0 & -0.1176 - 0.4706i & 0.4706 - 0.1176i & 0.1176 + 0.4706i & -0.4706 + 0.1176i \\ 0 & -0.1176 + 0.0294i & -0.0294 - 0.1176i & 0.1176 - 0.0294i & 0.0294 + 0.1176i \\ 0 & -0.1176 + 0.0294i & -0.0294 - 0.1176i & 0.1176 - 0.0294i & 0.0294 + 0.1176i \end{pmatrix}
\]

- \(S3 \) corresponds to the stationary distribution.
- \(S4 \) and \(S5 \) are complex conjugates, so \((i/4)^n S4 + (-i/4)^n S5 \) is a sum of two complex conjugates; thus, it is real-valued, even though complex numbers are involved in the computation.