
SOFTWARE FOR “MULTI DE BRUIJN SEQUENCES”

GLENN TESLER

gptesler@math.ucsd.edu
http://math.ucsd.edu/∼gptesler/multidebruijn

Last updated: July 16, 2017

This describes Maple software implementing formulas and algorithms in

Glenn Tesler (2017), Multi de Bruijn Sequences, Journal of Combinatorics, 8(3):439-474.

The software has been tested in Maple version 18. Load it with
read ‘multidebruijn.maple‘;

1. Multi de Bruijn sequences of various types

Definition Notation
Alphabet Ω
Alphabet size q = |Ω|
Word size k
Multiplicity of each k-mer m
Rotational order of a sequence d; must divide into m
Specific k-mer that sequences start with y

Number of multi de Bruijn sequences of each type. In these functions that give set sizes,
“_y” is in some function names but the functions do not take a parameter y because they’re the
same value for all valid y.

Multi de Bruijn Sequence Type Set Function giving size of set
Linear L(m, q, k) Blinear(m,q,k)

Cyclic C(m, q, k) Bcyclic(m,q,k)

Linearized cyclic LC(m, q, k) Blinearized_all(m,q,k)

Multicyclic MC(m, q, k) Bmulticyclic(m,q,k)

Linear, starts with k-mer y Ly(m, q, k) Blinear_y(m,q,k)

Linearized cyclic, starts with y LCy(m, q, k) Blinearized_y(m,q,k)

Cyclic, order 1 C(1)(m, q, k) Bcyclic_d1(m,q,k)

Cyclic, order d C(d)(m, q, k) Bcyclic_d(m,q,k,d)

Linearized cyclic, starts with y, order d LC(d)y (m, q, k) Blinearized_y_d(m,q,k,d)

1

Generate random multi de Bruijn sequences of each type.
alphabet_type=false: Ω = {0, 1, . . . , q − 1} (requires 1 ≤ q ≤ 10)
alpahbet_type=true: Ω is the first q letters of a, b, c, . . . , z (requires 1 ≤ q ≤ 26)

Multi de Bruijn Sequence Type Set Function giving uniform random element
Linear L(m, q, k) random_linear_mdb(m,q,k,alphabet_type)

Cyclic C(m, q, k) random_cyclic_mdb(m,q,k,alphabet_type)

Linearized cyclic, starts with 0k LC0k(m, q, k) random_linearized_mdb(m,q,k,alphabet_type)

Multicyclic MC(m, q, k) random_multicyclic_mdb(m,q,k,alphabet_type)

random_linearized_mdb takes additional optional parameters:

• root=r: Start with k-mer r ∈ [0, qk − 1] (r is an integer, representing its k digit base q
expansion)
• linear=false (default): Linearized sequence; the final (k − 1)-mer is deleted.
linear=true: Linear sequence. The final (k − 1)-mer is retained. It should match the
initial (k − 1)-mer.

Generate all multi de Bruijn sequences of certain types, for small m, q, k.

• list_mdb_brute_force(m,q,k)

Brute force search to find and count elements of LC0k(m, q, k) and C(m, q, k).
Prints a list of all elements of LC0k(m, q, k).
The elements that are lexicographically least among their rotations are marked with “*”.

Such elements can be used to represent C(m, q, k).

Return value: [n1, n2], where
n1 = |LC0k(m, q, k)| = number of linearized multi de Bruijn sequences starting with 0k

n2 = |C(m, q, k)| = number of cyclic multi de Bruijn sequences

• list_mdb_brute_force(m,q,k,return_seqs=true)

Brute force search to find elements of C(m, q, k).
Does not print a report.

Return value: list of strings that generate C(m, q, k). For each element of C(m, q, k), its
lexicographically least rotation is output.

• list_mdb_brute_force(...,prune_level=...)

Various methods to prune the search space. See the paper for details.
prune_level=0: Do not prune search space
prune_level=1: Prune based on k-mer counts (default)
prune_level=2: Prune based on k-mer counts and also 1, 2, . . . , (k − 1)-mer counts

• list_all_multicyclic_mdb(m,q,k) generates MC(m, q, k).
Returns a two-part list:

[
[σ1, σ2, . . .], [w1, w2, . . .]

]
σi represent elements of MC(m, q, k) and wi = EBWT(σi)
σi is represented as a list of strings, [s1, s2, . . . , sr], corresponding to (s1)(s2) . . . (sr)

2

Functions on strings.

Definition Notation Function
Rotate string s by i characters to the right ρi(s) rotate_string(s,i)

Primitive root of string s Root(s) word_root(s)

Power of string si = s · · · s (i times) word_power(s,i)

Lexicographically least rotation of s word_canon(s)

Functions on numeric representations of strings.
x is a number in base q with k digits, representing a string s:

x =
k−1∑
i=0

aiq
i represents string s = “ak−1 . . . a1a0” with 0 ≤ ai ≤ q − 1.

alphabet=“c0c1 . . . cq−1” is a string giving the alphabet:
Digit d ∈ {0, . . . , q − 1} in x is represented by character cd in s.

alphabet_type=false corresponds to alphabet=“ 012 . . . (q-1) ”.

alphabet_type=true corresponds alphabet equalling the first q letters of “ abc . . . z ”.

Definition Notation Function
Convert x to k-digits base q, as a string ak−1 . . . a0 int2kmer(x,q,k,alphabet)

Rotate one position to the right ρ(s) cycle_right1(q,k,x)

Rotate i positions to the left ρ−i(s) cycle_left(q,k,i,x)

Lexicographically least rotation of x calc_min_shift(m,q,k,x)

using base q with mqk digits

3

Subroutines used in computing random or brute force multi de Bruijn sequences of
each type.

• random_db_tree(q,k,root): Use the Kandel et al algorithm to compute a random span-
ning tree T of G(1, q, k) with specified root vertex root.

There are n = qk−1 vertices, numbered x ∈ [0, n− 1].

Write x in base q as ak−2 . . . a0. Then x =
∑k−2

i=0 aiq
i represents (k − 1)-mer ak−2 . . . a0.

root ∈ [0, n− 1] is a vertex.

Output: [b0, b1, . . . , bn−1], representing spanning tree T as a list.
bx ∈ {0, . . . , q − 1} indicates that vertex x has an outgoing edge in T :

x = ak−2 . . . a0
ak−2...a0bx−−−−−−−→ ak−3 . . . a0bx

Values of bx for x 6= root are chosen by the Kandel et al algorithm, while broot = 0.

• random_multiperm(m,alpha): Uniform random element of Wm,q over the alphabet speci-
fied by alpha.

Recall Wm,q is the set of permutations of 0m1m . . . (q− 1)m, that is, strings of length mq
with m copies of each symbol 0, 1, . . . , q − 1. This extends to other alphabets.

The alphabet can be:
alpha = string: Ω is the set of characters of the string. Set q to the length of the string.
alpha = integer q or [q,false]: Ω = {0, 1, . . . , q − 1}. Requires 1 ≤ q ≤ 10.
alpha = [q,true]: Ω is the first q letters of abcd. . . z. Requires 1 ≤ q ≤ 26.

• random_multiperm_constrained(m,alpha,a_last): Uniform random element of the sub-
set of Wm,q that ends in the a_lastth character of the alphabet alpha.

Note that a_last is a number 0, . . . , q − 1 regardless of how alpha is specified.

• generate_mq_multiperms(m,q): List all elements of Wm,q, using alphabet 0, . . . , q − 1.

• exittable2string(m, q, k, exit_table, root_v)

Generate a string by a walk through the graph G(m, q, k).
The walk starts at vertex root_v ∈ [0, qk−1 − 1].
Table exit_table encodes the function g(x) in the paper, which lists the order to select

outgoing edges of x along the walk.

• string2exittable(m,q,k,s)

s ∈ LC(m, q, k) is a string representing a linearization of a multi de Bruijn sequence.
Form a table exit_table, representing the function g(x) in the paper.
The initial vertex is the first (k− 1)-mer of s, and the initial edge is the first k-mer of s.
The example in the paper was generated as follows. Since random_linearized_mdb

is random, results will change each time. In this example, we want a random linearized
multi de Bruijn sequence starting with 021, which is the base 3 representation of 7, so set
root = 7. Note that > before the command is Maple’s prompt and should not be entered.

> random_linearized_mdb(2,3,3,false,root=7);

"021202210112012122202010211211101110022200100012210200"

> exit_table := string2exittable(2,3,3,

"021202210112012122202010211211101110022200100012210200");
4

exit_table := table(

["12" = "001212", "21" = "202110", "01" = "120102",

"02" = "120120", "11" = "221010", "22" = "120201",

"00" = "210102", "20" = "212100", "10" = "121002"

])

> exittable2string(2,3,3,exit_table,"02");

"02120221011201212220201021121110111002220010001221020002"

Note that this is a linear string rather than a linearized string, so the initial (k− 1)-mer 02
is repeated at the end. Delete it from the end to get the linearized string.

• test_mdb(m,q,k,n): Test if n ∈ [0, q` − 1] (in base q with ` = mqk digits, n = a`−1 . . . a0)
represents a cyclic multi de Bruijn sequence.
Return value: [success,i]

success is true if n does represent a cyclic multi de Bruijn sequence, false otherwise.
i allows pruning as described in the paper. ai+k−1 · · · ai is the first interval from the left

where a k-mer count exceeds m.

• test_uniformity(m,q,k,alphabet_type,seq_type,ntrials)

test_uniformity(m,q,k,alphabet_type,seq_type,ntrials,verbose=boolean)

Generate ntrials random multi de Bruijn sequences of the type specified by seq_type

and compute some statistics.

seq_type Chooses uniform random element of set
“cyclic” C(m, q, k)
“linearized” LC0k(m, q, k)
“linear” L(m, q, k)
“multicyclic” MC(m, q, k)

If verbose is true (default), it prints a report showing how many sequences were generated
out of the total number N in the set determined by seq_type. Also how many times each
sequence was generated, the z scores of these counts, and a χ2 goodness-of-fit test for
whether the distribution is uniform (null hypothesis: all N counts equal ntrials/N).

Return value: P -value for the χ2 goodness-of-fit test.

5

2. Burrows-Wheeler Transformation and Extended BWT

Definition Notation Function
BWT input string s
EBWT input: multicycle σ = (s1)(s2) . . . [s1,s2,...] (a list of strings)

Represent σ as a string ebwt_cycles_to_string([s1,s2,...])

(E)BWT output string w

Burrows-Wheeler Transform BWT(s) bwt_encode(s)

Inverse BWT BWT−1(w) bwt_decode(w) (see below)
Extended BWT EBWT(σ) ebwt_encode([s1,s2,...])

Inverse EBWT EBWT−1(w) ebwt_decode(w)

Forwards BWT table TB(s) bwt_encode_table(s)

table before sorting bwt_encode_table(s,sorted=false)

Inverse BWT table TIB(w) bwt_decode_table(w)

Forwards EBWT table TE(σ) ebwt_encode_table([s1,s2,...])

table before sorting ebwt_encode_table([s1,s2,...],

sorted=false)

Inverse EBWT table TIE(w) ebwt_decode_table(w)

columns in forwards EBWT table c ebwt_encode_num_columns([s1,s2,...])

columns in inverse EBWT table c ebwt_decode_num_columns(w)

Standard permutation of w standard_perm(w) (see below)

Examples:

> bwt_encode("00011101"); # Forward BWT

"10100110"

> bwt_encode("11101000"); # BWT of a rotation gives the same result

"10100110"

> bwt_decode("10100110"); # Inverse

"00011101" This implementation gives the lex least rotation

> ebwt_encode(["00011101"]); # corresponding computation with EBWT

"10100110"

> ebwt_decode("10100110");

["00011101"]

> bwt_decode("baab"); # Some strings are not invertible under BWT

undefined

> ebwt_decode("baab"); # All strings are invertible under EBWT

["aab", "b"]

6

For σ = (0001)(011)(1), the unsorted EBWT table is produced by

> ebwt_encode_table(["0001","011","1"],sorted=false);

["000100010001", "100010001000", "010001000100", "001000100010",

"011011011011", "101101101101", "110110110110", "111111111111"]

and the complete EBWT table TE(σ) is produced by

> ebwt_encode_table(["0001","011","1"]);

["000100010001", "001000100010", "010001000100", "011011011011",

"100010001000", "101101101101", "110110110110", "111111111111"]

Compute the transform:

> ebwt_encode(["0001","011","1"]);

"10010101"

Compute the inverse:

> ebwt_decode("10010101");

["0001", "011", "1"]

standard_perm(w) computes the standard permutation of string w, and related quantities:

• Returns a list of four values, [perm, invperm, cperm, cperm_words].
• perm is the “standard permutation” of Gessel and Reutenauer in “1-line form” as a list of

numbers 0, . . . , n− 1 in some permuted order.
• invperm is the inverse permutation in the same format.
• cperm is the cycle form of perm, represented as a list of lists.
• cperm_words is the strings corresponding to each cycle of cperm under the Gessel-Reutenauer

bijection.

The example in the paper:

> standard_perm("10010101");

[[1, 2, 4, 6, 0, 3, 5, 7],

[4, 0, 1, 5, 2, 6, 3, 7],

[[0, 1, 2, 4], [3, 6, 5], [7]],

["0001", "011", "1"]]

This represents:

standard permutation in 2-line form π =

(
0 1 2 3 4 5 6 7
1 2 4 6 0 3 5 7

)
inverse in 2-line form π−1 =

(
0 1 2 3 4 5 6 7
4 0 1 5 2 6 3 7

)
standard permutation in cycle form π = (0, 1, 2, 4)(3, 6, 5)(7)

Gessel-Reutenauer bijection maps w to this element of M σ = (0, 0, 0, 1)(0, 1, 1)(1)

7

