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Nonlinear H ~176 Control Theory for Stable Plants* 

Joseph A. Ball1" and J. William Helton~ 

Abstract. We analyze various aspects of the nonlinear time-invariant H | control 
problem in the discrete-time setting. A recipe is presented that is shown to generate 
a solution of the H | problem in a precise but weak sense, and which is conjectured 
to generate a genuine solution in very general circumstances. The recipe involves 
a version of the Hamilton-Jacobi-Bellman-Isaacs equation from differential 
game theory. An illustrative example is presented. 
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1. Introduction 

For mathematical convenience we deal only with discrete-time problems in this 
paper. For cg any real Hilbert space (usually finite-dimensional), we denote by 12§ 
the space of %valued sequences ff = {g(n)}~_ 0 that are norm square-summable. 
The following basic problem of H ~~ control theory is illustrated in Fig. 1.1 (see 
[F]). 

(C) Given a system ~ ,  find a feedback K that produces an internally stable system 
whose input-output map T=~: ~ --* -Z satisfies 

Here ~ and K are assumed to be causal time-invariant input-output  (IO) maps. 
The input signals ~ and ff for ~ are assumed to have values in finite-dimensional 
input spaces W and U, while the output signals ~ and ~ are assumed to have values 
in output spaces Z and I'i. We demand that the system be well-posed so that the 
closed loop IO map T~w is well defined, causal, and time-invariant. We do not insist 
that ~ or K be linear but do require that they take 0 to 0. In the linear case, internal 
stability of the closed loop system can be defined in two ways (see I-F]). In terms of 
IO maps, it means that the output signal 7, as well as the internal signals ~ and if, 
are in 12+ 2+ --* z , l~ +, and respectively, for any choice of 2+ �9 lw -anput w, even in the lv , 

* Date received: July 20, 1990. Date revised: September 2, 1991. 
t Department of Mathematics, Virginia Tech, Blacksburg, Virginia 24061, U.S.A. Phone (703) 

231-7080. 
:~ Department of Mathematics, University of California at San Diego, La Jolla, California 92093, 

U.S.A. 

233 



234 J.A. Ball and J. W. Helton 

u 

Fig. 1.1 

z > 
y 

J 
presence of/2+-perturbations of the internal signals. A state space formulation of 
internal stability is that the state for the composite closed-loop system in Fig. 1.1 
tends to zero for any initial state if the input signal is ff~ = 0. These two definitions 
are equivalent in the linear case if we assume that we are working with minimal 
state space realizations for N and for K; see [$1], Section 6.3. Relations between 
input-output  and internal stability were studied in some detail in [$2]. For the 
nonlinear case, we shall be working with a state space representation for ~;  using 
a tilde to denote the state update operator, we have 

~: Gl(x, w, u), (1.1) 

G 2 (x, w, u), 

and we will seek a state space representation for K 

~  = f(~' y)'g(4, Y), (1.2) 

so that the resulting closed-loop state space system is stable in one of the senses 
defined in Section 2. 

In previous work [BH1-3] we presented a theory and a recipe which under 
certain hypotheses, the most crucial being the existence of a unique critical point 
for a certain energy function, led to a state space representation for a nonlinear 
fractional parametrization of a large class of solutions of (C). Construction of the 
nonlinear fractional parametrizer involved some work in addition to solving a critical 
point equation, namely, computation of a Morse-theoretic diffeomorphic change of 
variable. In practice, we may be interested in obtaining some particular solution of 
the problem in a simple way without doing the extra work required to obtain a 
nonlinear fractional parametrization of a whole class of solutions. In this paper, we 
show how solving a modified critical point equation leads to the construction of a 
particular solution (at least in a modified weak but suggestive sense) of the H ~~ control 
problem. Actually, we first consider a special case of the general problem, a full 
information version of the problem, where it is assumed that the sensor whose output 
is fed into the compensator K can measure the present value of the state x and 
the input w; this amounts to the special case of the general problem where the 
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compensator K is required to be memoryless and the second output y of 

is assumed to be lXwl. This leads to the full information control problem (see 

Fig. 1.2), which plays a major role in [DGKF] for the linear case. 

(FC) Solve (C) for the special case where K is required to be memoryless and y is 

assumedtobegivenbyy=IXwl. 

We next reduce the solution of the output feedback problem (C) to the (FC) 
problem under the assumption that we can solve for the disturbance from the 
measurement for each fixed value of the state; this corresponds to the 2-block case 
in the linear theory and includes most examples of applied interest (e.g., the mixed 
sensitivity problem for a square invertible plant). For a large class of linear mixed 
sensitivity problems, our recipe produces the usual maximum entropy or central 
solution. 

Our goal is to give a recipe that produces a controller which solves (FC) and 
ultimately (C), in general, which is computationally implementable at least for 
systems having only "mild" nonlinearities. We shall give theorems that describe the 
range of validity of the recipe to a reasonable extent. Also, we work out in detail 
the example of a plant consisting of a linear system followed by a memoryless 
function M. We find that one instance where the recipe indeed leads to a solution is 
the case where llM(x) ll ~ is strictly convex. At the other extreme, if M is a saturation 
nonlinearity, then serious difficulties arise. 

Unlike the work in [BH1-3], in this paper we make use of the special structure 
for the critical point of an energy function, namely, that the critical point is a 
max-min point for the energy function. This leads to a simple direct proof that the 
full information controller constructed via our recipe leads to a passive closed-loop 
IO map Tzw as required in (FC). 

Recently, a number of papers have explored the connections of linear H ~ control 
with differential game theory (see [BO]). For example, I-B] gives a game-theoretic 
interpretation of a state feedback H ~ problem and obtains the solution as a direct 
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application of game theory results, and [PSI provides a survey of the connection 
in the literature. This paper continues the development begun in [BH4] of such 
connections for the nonlinear setting. In the beginning, it was not at all clear which 
of the many possible information structures and games (as in [BO]) to associate 
with the conventional H ~ control problem. For  example, in [B] the author solves 
a state feedback H ~ problem where the controller is assumed to have access to 
only the currect state and not the current disturbance; however, as was shown in 
[ D G K F ]  and as we show here, the (FC) problem is the state feedback problem that 
serves as the stepping stone to the output feedback problem. Certain aspects of our 
recipe can already be found in [BO] in the context of a very general, but finite 
horizon, nonlinear differential game. Indeed, the equation for the unknown energy 
function e that we present is just a form of the classical Hamil ton-Jacobi -Bel lman-  
Isaacs equation of differential game theory, and the method of solving for the critical 
points of e via the Hamiltonian is also well known in differential game theory (see 
[BO]). The work in [BH1-3] ,  originally motivated by a search for a nonlinear 
Beurling-Lax theory with applications, led to a rediscovery of some of these ideas 
in differential game theory. Our contribution here is to adapt the machinery from 
differential games to the setting of the infinite horizon nonlinear H ~ control prob- 
lem, where stability is a crucial consideration. 

Since the first draft of this paper was submitted for publication, there have 
appeared at least two papers ([PS-I and [IA]) that treat the H ~~ problem for 
continuous-time systems as an application of the nonlinear version of the bounded 
real lemma (see [W] and [HM]).  This underlying idea is implicit in our recipe for 
the (FC) problem as well. Also, it is clear that certain formulas can be made more 
explicit if we assume that the state space representation of the plant ~ is affine with 
respect to the inputs. In [BHW] we present more details on these points for the 
continuous-time case. 

2. Preliminaries 

In this section we give some background material that will be needed for the 
exposition in later sections. 

Much of our analysis depends on finding critical points for a smooth, real-valued 
function defined on a manifold. In general, if ~o: S ~ E is a real-valued function on 
a manifold S, a point s* in S is said to be a critical point for q if the gradient at s*, 
V~o(s*), vanishes 

Wp(s*) = O. 

For  us it is often more convenient to express this in terms of directional derivatives 
of ~o at s*: 

Dq(s*)[h] = 0 for all h ~ T~.S. 

Here Dqg(s*)Fh] expresses the directional derivative of q at s* in the direction h, 
where h is a vector in the tangent space T~,S of S at s*. If s* is a critical point for ~o, 
we say the corresponding value tp(s*) e R is a critical value for q. 

In general, we may also take the second derivative of q at a point s* to get a 
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bilinear form (h, k) ~ D2go(s*)[h, k] on T~,S x T~,S, called the Hessian of go at s*. 
If we assume that S is a Riemannian manifold, so that T~,S has a Hilbert space inner 
product ( , ) defined on it, then with respect to some basis on T~,S the bilinear 
form Dgo(s*) on T~,S x T~,S is induced by a symmetric matrix A: 

D2go(s *) [h, k] = (Ah, k).  

This matrix A we refer to simply as the Hessian matrix for go at s*, also denoted by 
D2go(s*). When S has a Cartesian product decomposition, S = W x U, and s* = 
(w*, u*), then T~,S = Tw, W x T~,U and we denote by D2ugo(s*), D~,,~go(s2 *), Dwwgo(s2 ,) 
the restrictions of D 2 go(s*) to natural coordinate subspaces of T~,S: 

D2wgo(s *) [hl, h2] = D2go(s *) [(hl, 0), (h2, 0)], 

D2~ugo(s*)[hl, k2] = D2go(s *) [(h 1, 0), (0, k2)], 

DZuu go(s*) [k 1, k23 = O 2 go(s*) [(0, k 1), (0, k2)], 

for hi, h2 ~ Tw, W and k 1, k 2 ~ T~,U. These we refer to as the partial Hessians of go 
at s*. 

When S = W • U, it is natural to consider max-rain points, i.e., points s* = 
(w*, u*) for which 

go(w*, u*) = max rain go(w, u). (2.1) 
w ~ W  u ~ U  

By a local max-rain point, we mean a point s* = (w*, u*) for which (2.1) holds at 
least in a local form, i.e., 

go(w*, u*) = max min go(w, u), (2.2) 
w~Ww* u~Uu* 

where W~, and Uu, are neighborhoods of w* and u*, respectively. The following 
elementary result gives the precise connection between max-rain points and critical 
points. 

Lemma 2.1. Let go: W x U --, R be a smooth function and suppose that the Hessian 
matrix D2~go(w *, u*) of go with respect to the u variable at (w*, u*) is invertible. I f  
(w*, u*) is a local max-rain point for go, then: 

O) The point (w*, u*) is a critical point for go. 
(ii) The Hessian of go with respect to u evaluated, at (w*, u*) is positive semidefinite: 

D2ugo(w *, u*) [k, k] >_ 0 for all k ~ T~, U. 

(iii) The Schur complement is negative semidefinite: 

2 2 2 - 1  2 , (Dwwgo < - [D~#p])(w , u*)[h, h] 0 for all h Tw, W. D~,go- [D,.go] �9 _ e 

Conversely, if (i) holds and (ii) and (iii) hold with strict inequality for k r O, h r O, 
then (w*, u*) is a local max-rain point for go. 

Proof. Assume first that (w*, u*) is a local max-min  point for ~p. Then, for each 
w e W~,, there is a u = u*(w) e Uu, such that go(w, u*(w)) = min~vu * go(w, u) where 
by assumption u*(w*) = u*. By the smoothness of go we have D.go(w, u*(w)) = O. In 
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particular, Dung(w*, u*) = 0. Since Duu~0(w*, u*) is invertible, by the implicit function 
theorem, u*(w) is uniquely determined in a sufficiently small neighborhood of u* by 
the equation D,~o(w, u*(w)) = 0 and the function w ~ u*(w) is also smooth. Since 
(w*, u*) is a max-min point for ~o, we have 

q~(w*, u*)= max ~(w), 
W E W~v* 

where r = cp(w, u*(w)). By the chain rule, r is also smooth and hence D~k(w*) = 
O. On the other hand, 

De(w) --- Dwq~(w, u)[,=u.r ) + D,q~(w, u)l,=u*(w)" Du*(w) 

= Dwq~(w, u)l,=,*<w). 

When w = w*, u*(w) = u* and hence Ow~o(w*, u*) = 0. We conclude that (w*, u*) is 
a critical point of q~. 

Since ~o(w*, u*) = min,~t:~, q~(w*, u), it follows that D2q~(w *, u*) is positive semi- 
definite. Moreover, since ~o(w*, u*) = maxw ~ w if(w) it follows that D 2 r is nega- 
tive semidefinite. We can compute that D2~I = D,w~pz - D~,~o . 2 -1 " D?,w~O.~ This 
completes the proof of the direct side in Lemma 2.1. 

For the converse, if(w*, u*) is a critical point and D2,q~(w *, u*) is positive definite, 
we again can solve uniquely for u = u*(w) ~ U,. for each w in a neighborhood of 
Ww* of w* so that D,~o(w, u*(w)) = 0. By continuity, D2,cp(w, u*(w)) remains positive 
definite in a sufficiently small neighborhood, so u*(w) is a local minimum for q~(w, .) 
for each w in a sufficiently small neighborhood of w*. By reversing the calculation 
in the first part of the proof and using that D2r *) = (Dwwq~2 _ _  Owuq ) 2  "[Duu2 ~0]-1 , 

[D~wqg])(w*, u*) is negative definite, we also see that r  maXw~w~ * ~k(w) (as 
long as Ww* is taken sufficiently small). �9 

The following lemma enables us to interchange maxw and minu in certain special- 
ized situations. Parts of this result overlap Lemma 3.10 from [BH1]. 

Lemma 2.2. Suppose that f is a smooth function defined on the Cartesian product 
of  two manifolds ~' and ~ .  Suppose, in addition, that ~ and SZ have Cartesian product 
decompositions 

.~ = ,~+ x , ~ _ ,  

,~  = ,Y'+ x ,~_. 

Suppose also that: 

1. f has an isolated max-rain point at (r*, s*); in more detail, by this we mean that 
(r*, s* ) has the form ( (r*, r* ), ( s*, s* ) ) and max .. . . .  min ... . .  f ( (r +, r_ ), ( s +, s_ ) ) = 
f((r*, r*), (s*, s*)) where (r+, r_, s+, s_) vary over a neighborhood of (r*, * r_, 

s*+, s*). 
2. For each f ixed r = (r+ , r_ ) in a neighborhood of(r*, r*_ ) the function ~k (s +, s_ ) ~= 

f((r+, r_), (s+, s_)) has a unique max-rain point at r = (q~+(r), ~o_(r)): 

max min f(r,  (s+, s_)) = f(r,  (~o+(r), ~o_(r))). 
s+ $_ 
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3. The partial Hessian matrices 

O2f(r *, s*), 2 * * * O;,2f((r+, r_), (s+, s_)), Dr r*), (s+, s_)), D],=f(r*, s*), 2 , , , , 

are all invertible. 

Then the function ~P: ~+ x ~ _  defined by 

W(r+, r_) ~ f((r+, r_), (~p+(r+, r_), cp_(r+, r_))) 

has a local max-min  point at r* = (r*, r*) 

max rain q'(r+, r_) = ~(r+, r_) 
r +  r _  

and s* = q~(r*). 

Proof. The proof involves a brute force verification, using an intricate Schur 
complement decomposition of the partial Hessian condition for a local max-rain 
point given by Lemma 2.1. We give the details in the Appendix. �9 

We now return to the setting of the control problem. Let us suppose that we are 
given IO map ~:  ff ~ ~' as in Fig. 2.1, which is modeled by state space equations 

s = F(x, u), y = G(x, u). (2.3) 

Thus, if the initial state is x, the output sequence ~is generated by the input sequence 
ff according to the recursion 

s + 1) = F(s if(n)), ~(0) = x, 

;(n) = G(Y(n), if(n)). (2.4) 

We assume that the element 0 of the state space X is an equilibrium point; then 
0 = F(0, 0), 0 = G(0, 0). Now suppose that we have specified an energy function 
e: X ~ ~+ for which e(x) = 0 if and only if x = 0. We say that the system (2.3) is 
asymptotically e-controllable if for each initial state x there is some choice of input 
sequence fix ~ 12+ for which the resulting sequence of states ~ generated by (2.4) has 
the property that 

lira e(Y(n)) = 0. (2.5) 
n ~ o o  

Similarly, we say that (2.3) is asymptotically e-stable if (2.5) holds for any choice of' 
input sequence ff ~ 12+. Next, we say that (2.3) is simply e-stable if at least 

sup e(s < 
n 

J > 

Fig. 2.1 
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for any choice of input sequence fi' ~ 12 +. By asymptotically controllable we mean 
that for each initial state x there is a choice of input sequence fix ~ 12+ for which the 
resulting sequence of states Y itself tends to the equilibrium point 0 

lim Y(n) = 0 
n--~ oo 

in the state space. We define asymptotically stable and stable by similar modifica- 
tions of the definitions of asymptotically e-stable and e-stable. The conventional 
notion of asymptotically stable, that s --, 0 for any initial state when ff = 0 is fed 
in, we shall call zero-input asymptotically stable. Note that if e is proper (inverse 
image of bounded sets is bounded) and ifx r 0 implies e(x) > 0, then asymptotically 
e-controllable implies asymptotically controllable, and similarly for asymptotically 
e-stable and e-stable. Finally, we say that the system (2.3) is input-output passive if 
for any fi' ~ 12+ we have 

Ily(k)ll2- < ~ Ilu'(k)N 2, 
k = O  k = 0  

where the output sequence ~ is generated from (2.4) with x = 0. Alternatively, we 
may express this as 

- - * 2  - ' 2  IIP, y I[~+ < Ile, u [Iz~+, 

where, in general, 
~'~(k), 0 _< k < n, 

(P.~)(k)  = 10, k > n. 

3. The Recipe and Main Results 

3.A. Recipe for Solving (FC) 

Now.we turn to the recipe for solving (FC). We assujme that we are given a state 
space representation as in (1.1) for the plant N. The main unknown is a function 
e: X ~ N+ on the state space; intuitively, we think of e(x) as representing how much 
potential energy is in the state x, and the main equation is an energy balance 
inequality. 

Recipe 3.1 for (FC). 

1. Find a function e: X ~ E+ satisfying 

(E) e(x) >_ max min {e(F(x, w, u)) + []Ga(x, w, u)[] 2 - I lwll2}.  
w u 

With this choice of the function e define 

Q(x, w, u) ~ e(F(x, w, u)) + I[al(x, w, u)ll 2 - Ilwll 2, 

Denote the critical points by w*, u*. 
2. Compute 

u*(x, w) ~ arg min Q(x, w, u). 
u 
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3. Use as the feedback law 

u = u*(x ,  w). 

The output feedback control problem (C) can easily be reduced to the (FC) if we 
make some simplifying assumptions. Namely, we assume that G2 is independent of u 

y = G2(x , w) (3.1) 

and, for each fixed x, that G 2 is a diffeomorphism as a function of w. Thus, there is 
a smooth function GI2(x, .) such that 

y = G2(x, GX2(x, y)), w = G~(x, G2(x, w)). (3.2) 

Then the same performance Tzw can be achieved by an output feedback with a 
dynamic compensator given by the following recipe. In the linear case these assump- 
tions are generally satisfied for the 2-block case and fail to hold for the general 
4-block case; we are content here to analyze a nonlinear generalization of the 
2-block case. 

Recipe 3.2 for (C). Assume (3.1) and (3.2). 

1. Find e and u* as in Steps 1 and 2 of Recipe 3.1. 
2. Use as feedback law the dynamic compensator ~' = K()') given by state space 

equations 

= F(r G~(~, y), u*(~, G~(r y))), u = u*(~, G~(r y)). 

It is also possible to give continuous-time analogs of these recipes. In the continu- 
ous-time setfing;Xl~e s-~t~te space repte-se-ntation-for~aeglant has the form 

~: Yc=F(x ,w,u) ,  z = G I ( x , w , u ) ,  y = G ~ y w ? u ) ,  

and we seek a state space representation for the compensator K of the form 

K: ~ = f ( ~ , y ) ,  u=g(~ , y ) .  

If, in the recipes, (E) is replaced by 

(E-C) 0 > max min {Ve(x). F(x, w, u) + Ilax(x, w, u)ll 2 - Ilwll 2 } 
~,r It  

we obtain, at least formally, continuous-time analogs of all the results stated here 
explicitly for discrete time. We shall treat the continuous-time case in more detail 
in I-BHW]. 

We now state our results concerning the validity of Recipe 3.1. The definitions of 
the various stability notions are given at the end of Section 2. 

Theorem 3.1. Suppose a function e: X ~ ~+ exists and u*(x, w) is defined as 
in Recipe 3.1. Then the closed-loop transfer function Tzw, as in Fig. 1.2 with 
u = u*(x, w), is input-output passive, i.e., 

" *  2 " *  2 IIP.Tzw(W)ll~+ ~ Ilenwllz~+ for n = 0, 1, 2 , . . . .  
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Consequently, 

2 

for all ff~ ~ 12+. Moreover, the state space system in Fi 9. 1.2 is e-stable. Suppose, in 
addition, that e(x) > 0 for x ~ O, that e is proper, and that the closed-loop system is 
detectable, in the sense that 

~(k + 1) = F(~(k), O, u (x(k), 0)), 0 Gl(x(k), O, u*(Y(k), 0)) 

implies lim Z(k) = O. 
k ~ O  

Then the closed-loop system is, in addition, zero-input asymptotically stable. 

Proof.  By assumption,  e: X -* ~+ satisfies (E), so 

e(x) > max min Q(x, w, u), 
W It 

where 

Q(x, w, u) = e(F(x, w, u)) + I[al(x, w, u)ll 2 - Ilwll~. 

Hence, for any fixed x and w, 

e(x) > min Q(x, w, u) = Q(x, w, u*(x, w)). 
It 

Plugging in the definition of Q gives e(x) >_ e(F(x, w, u*)) + II G1 (x, w, u*)IJ 2 _ II w fl 5 

s o  

e(x) - e(F(x, w, u*)) >>_ rlGl(x, w, u*)ll  2 - Ilwll 2 (3.3) 

for all x e X and w E W where u* = u*(x, w) is given as in Recipe 3.1. Now let 
= {~(n)}n> o be an input string for the closed-loop system Tzw. The resulting 

output  string g = {~'(n)},>_ o is determined recursively by 

~(n + 1) = F(~(n)), ~(n), u*(~(n), ~(n))), ~(0) = 0, 

Y(n) = Gl(s ~(n), u*(s ~(n))). 

Compar ing  with (3.3) we see that  

e ( Y ( k ) ) -  e(27(k + i)) > II~'(k)lf 2 - II~(k)l l  2 (3.4) 

for all k. Summing from k = 0 to k = n gives 

e(2(0)) - e(2(n + 1)) > ~, [l~(k)ll 2 - ~ I/~(k)ll 2. (3.5) 
k = 0  k = 0  

By assumption,  e(~(0)) = 0 and e(x) > 0 for all x. We conclude that 

Jr (k)fl2_< f pt (k)lf 2 
k = O  k = 0  

whenever ~ = T~w(~). This shows that  T~w is i n p u t - o u t p u t  passive as asserted. 
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To prove e-stability of the system in Fig. 1.2, observe that (3.5) implies that 

e(~(0)) + ~ II~(k)ll 2 _> ~ II~'(k)ll = + e()7(n + 1)) 
k = 0  k=O 

> e(~(n + 1)). 

Hence if: r l 2+ implies that sup, e(Y(n)) < 0% as required. 
The remaining assertion of the theorem follows by a standard type of Lyapunov 

argument (see [PSI and [IA] for similar type arguments). If we specialize the 
argument above to the case ~(k) = 0, from (3.4) we see that e(Y(k)) is decreasing in 
k and hence limk.~ e(s = e,  exists. If e is proper, from the boundedness of 
e(Y(k)), we conclude that s is bounded, and hence that there is a m-limit set f~ 
associated with the orbit {Y(k)} which is invariant under the closed-loop dynamics 
(with ~ (k )=  0) and in which e has the constant value e*. From (3.4) again we 
conclude that G1 (x, O, u*(x, 0)) = 0 for each x in f~. Now, from the detectability 
assumption, it follows that limk_~o o Y(k) = 0 if s r fl and hence e.  = 0. Thus 
limk_.~ e(Y(k))= 0 for the original orbit (with an arbitrary value of ~(0)) as 
well. Finally, since e is proper and x # 0 implies e(x)> 0, we conclude that 
lim~_~o s = 0 as well. �9 

3.B. The Input-Output Approach 

To implement Recipe 3.1 we must be able to find a function e satisfying (E) to 
complete the first step. We next give a formula for a function e that automatically 
satisfies (E) whenever it is well defined. In the course of doing this we develop a 
correspondence that is important in game theory and dynamic programming (see 
[BO]) (an area where stability considerations for the infinite horizon context have 
received little attention). As an additional dividend, this correspondence enables us 
to derive another stability result for Recipe 3.1. 

Denote by ~ f  the input-output  map associated with the system ~ with initial 

state x, i.e., if g if a sequence (also called a string) of inputs in l~r @ l~:, then 

= = ~x (w, u) is the associated sequence of outputs generated 
LY d L ~ ( ~ ,  u ) j  
with initial state equal to x defined recursively by 

~(n + 1) = F(~(n), ~(n), if(n)), ~(0) = x, 
(3.6) 

~(n) = G~(~(n), ~(n), ~(n)), ;(n) = 62(~(n), r ~(n)). 

Let ~x c 12+ @/~+ be the set of/2+-sequences [ ~ ]  for which the associated output 

sequence g is also norm-square-summable: 

} ~ x =  ff e l  20 )  1 2 : ~ ( ~ , f f ) ~ l z  2+ �9 

We now provide a link between critical points for two different types of energy 
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functions. In general, if x e X and Y e 12, by (x, Y) we denote the sequence 

(x, ~)(k) = ~x, k 0, 
Y(k - 1), k _> 1. ( 

Proposition 3.2. 

by 

Define a function 

~(x, ~, ~): g: 
( 

go(x, ~, ~) I [ ~ ( ~ ,  ~ 2 ~ 2 = u)[ll~+ - I l w l l ~ +  

and suppose that: 

(S) For each x ~ X there is a choice of isolated critical point (ff~*, fix*), depending 
smoothly on x, in the interior of ~x for go(x, ", ") which is a local max-rain point 
for go(x, ", "): 

go(x, ~*, fi'*) = max min go(x, ~, if), 
~,~W~ ~ U x  

where W~ and Ux are neighborhoods of ~* and if* in l~, + and 13 +, respectively. 
Define a function e: X ~ • by 

e(x) = go(x, ~*, ~*). 

Then e satisfies (E) with equality locally, i.e., for each x ~ X the function 

Q(x, w, u) = e(F(x, w, u)) + I[G~(x, w, u)ll ~ - IfwlJ ~ 

has a critical point (w*, u*) which is a local max-rain for Q(x, ", ") and 

e(x) = Q(x, w*, u*) = max rain Q(x, w, u) 

(here Q~ and Q~ are open neighborhoods of w* and u*, respectively). Moreover, the 
critical point (~*, ~*) for g~ .) and the critical point (w*, u*) for Q(x, ., .) are 
connected in the following way: 

~* = (w*, ~*(~,%:)), (3.7) 

u ~* (u*,-'* = uF(~, :~,.*)). (3.8) 

[ v : l  from V~:~ Conversely, Remark. Equations (3.7) and (3.8) tell us how to get L u , ]  Lf f , [ .  

under the assumption of Proposition 3.2, we can recover Lff*_l from the function 

Fw:] x -~ Lu*J ~ w • u as the solution of the recurrence equations 

~*(k + 1) = F(Y*(k), ~*(k), ff*(k)), ~*(0) = x, 

WYc*(k) 

[ff*(k)J U~*(k) 
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If we only assume that e is known and that the function Q(x, w, u) = e(F(x, w, u)) + 
IlGx(x, w, u)ll  2 - Ilwll 2 has a max-min point (w*, Ux*) for each x, the above recursion 
generates a candidate for a max-min  point for r ~, ~'). A natural stability 

" 1  

constraint for the problems here is that the resulting sequence [ w i |  is in 12 • 12. 
La*d 

Remark. The assumption (S) is not as strong as it may seem. Existence of ~'* can 
be proved as follows. Since ~-~l(x, ~, .) is causal, we can show that it is weak-,  
continuous. We can then get the existence of ~'* from the weak-,  compactness of 
bounded sets and the semicontinuity of the norm function I I ' l l  with respect to the 
weak-,  topology. 

With the assumption (S) we now obtain the following stability result for the full 
information controller constructed in the Recipe 3.1. The proof will be given in the 
next section. 

Theorem 3.3. Let ~ be as in (FC), assume that (S) holds, and that the full information 
feedback u = u*(x, w) is constructed as in Recipe 3.1 (where equality holds in (E)). 
Then the closed-loop system in Fig. 1.2 is asymptotically e-controllable for the e 
given by e(x) = r ~*, 3*). 

Internal stability for the closed-loop system in Fig. 3.1, with compensator 
constructed as in Recipe 3.2, appears to be more delicate. We are able to get a 
precise result if we impose an additional hypothesis which leads to a feedback 
configuration of a model matching problem (see IF] for the linear case): 

(MM) G2(x , w, u) = G2(w ). 

We have the following result. 

Theorem 3.4. Let ~ be a plant with state space equations of the form 

= F(x, w, u), z = GI(x, w, u), y = G2(x , w), 

suppose that (3.1) and (3.2) hold, and assume (x, w) ~ u*(x, w) is constructed as in 
Recipe 3.1. Then the compensator K, defined by state space equations as in Recipe 
3.2 used as an output feedback in Fig. 1.1, induces the same I 0  map Tzw for the 
closed-loop system, as does the full information controller given by Recipe 3.1. If, in 
addition, 5~ is in the special form (MM) and the closed loop full information configura- 
tion in Fig. 1.2 with K constructed via Recipe 3.1 is asymptotically e-stable, then 
the closed-loop output feedback configuration with compensator K as above is also 
asymptotically e-stable. 

We conjecture that the internal stability result in Theorem 3.4 in fact holds under 

[1 the weaker conditions that the system with input variable u and output variable 
Y 

E~vl given by state space equations 

= F(x, G~(x, y), u), z = GI(x, G~(x, y), u), w = G~(x, y), 
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be stable. This is consistent with the linear case and is the reason for the qualification 
"stable" in the title of this paper. 

Proofs of Theorems 3.2-3.4 in this section will be discussed in the next section. 
We also mention that if assumption (3.1) fails, we replace assumption (3.2) with the 
assumption (3.1') that the function Gz(X, w) ~= G2(x, w, u*(x, w)) be a diffeomor- 
phism as a function of w for each fixed x, i.e., that there is a function Gz~(X, y) for 
which 

y = (~2(x, G~(x, y)), w = G~(x, G2(x, w)). (3.2') 

Then replacing G~ by G~ gives a recipe for the output feedback problem under the 
more general situation allowed by assumption (3.1') and (3.2'), which is consistent 
with the central solution in the linear case. 

4. Proofs of the Main Results 

In this section we turn to the proofs of the results announced in Section 3. 

Proof of Proposition 3.2. Apply Lemma 2.2 to the function 

f((w, u), (fl, ~)) = g(x, (w, fi), (u, ~)). 

Here w e W, u e U, f le  12+, cr �9 l 2+, and 

(w, fl)(k) = (fi(k - 1), k > 1. 

Note that from the definition of g in Proposition 3.2 and the recursive definition 
of the IO map ~-~ we have 

g(x, (w, fl), (u, Y)) = g(F(x, w, u), f~, if) + HGI(x, w, u)l[ 2 - []w]] z. 

For fixed (w, u), the associated function Oo~.u)(fl, Y), as in Lemma 2.2, is given by 

~(w,,)(fl, Y) = g(V(x, w, u), fl, if) + IIGl(x, w, u)[] 2 - Ilwl[ 2. 

Note that the last two terms are independent of fl, fi'. Thus, by definition of the 
function x ~ e(x) in Proposition 3.2, we see that 

Q(x, w, u) ~ max rain Or g) 
a 

= e(V(x, w, u)) + ][Gl(x, w, u)j] 2 - Jlw][ 2, (4.1) 

and that the max-min occurs at the point (fl, Y) = (w~x,,~.,), fly] . . . . .  )). Thus, in the 
notation of Lemma 2.2, 

~o(w, u) = ( ~  . . . . .  ), ff~ . . . .  ,)). (4.2) 

Also, in the notation of Lemma 2.2, the function f((r+, r_), (s+, s_)) has a max ..... - 
min .... point at (r*, s*) = (r*, o(r*)) while the function qJ(r+, r_) has a max-rain 
point at r*. This general observation, applied to our setting here gives us that the 
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critical point (~*, if*) for 8(x, ", '), has the form 

vT* = (w*, ~*~ . . . .  )), (4.3) 

ux (u*, (4.4) UF(x,w,u)), 
where (w, u ) =  (w*, u*) is the local max-rain point for the associated function 
Q(x, w, u) given by (4.1). Also, in Lemma 2.2, we had 

f((r*, r*), (s*, s*)) = max min f((r+, r_), (s+, s_)) 
r + , s +  r , $ _  

=maxmin{maxminf((r+,r_),(s+,s_))},  
r +  F_ i a+  $ _  

which for our setting here becomes 

e(x) = m(n min 8(x, (w,/~), (u, Y)) 
(w,#) (u,'~) 

= max min {e(F(x, w, u) + IIGl(x, w, u)ll 2 - Ilwl12}. (4.5) 
W U 

Since the right side of (4.5) is only a local max-min,  this shows that e satisfies a 
local form of(E) with equality. Finally, formulas (3.7) and (3.8) follow from (4.3) and 
(4.4), and Proposition 3.2 follows. �9 

We are now in a position to prove Theorem 3.3. 

Proof of Theorem 3.3. For each x ~ X, let (~*, if*) be the max-min critical point 
of g (x , . ,  .) as in (S). We show that the input string ~ = ~* ~ lZw + has all the 
properties required in Theorem 3.3. Using ~* as the input string, the evolution of 
the state in the closed-loop system with full information control given by Recipe 
3.1 is given by 

Y(k + 1) = F(Y(k), ff~*(k), u*(Y(k), ~*(k))), Y(0) = x. 

For k = 0, we have 

~(1) = F(x, ff~*(O), u*(x, ff~*(0))), ~(0) = x. 

By (3.7) we know that ~*(0) = w*. From the definition of the function (x, w) --} 
u*(x, w) and by (3.8), it is easy to see that 

u * ( x ,  = u *  = 

Thus 

~(1) --- F(x, ~*(0), ~*(0)). 

Also, from (3.7) and (3.8), we see that 

= = s % ,  

where S* is the backwards unilateral shift operator. Hence, from the recursive 
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definition of the IO map f f ~ :  (5, if) ~ z (see (3.6)), we get 

e(~(1)) ~ -~. ~ .  2 = I I ~ o ~ , , ( w ~ . ~ ,  u~.~)ll - 1 1 5 ~ . 1 1 2  

I I S * ~  -'* = (w~, ~*)112 - II8"5"112. 

Using a similar argument,  by induction we can show that, in general, 

eC~(n)) = ] [ S * " ~  (5",  ff*)ll 2 _ IlS*"5* [I 2. (4.6) 

Since ~,~t,7"~1 ~,~,  if*) e l~ + and 5 "  e l~ + it follows now from (4.6) that  

lira e(~(n)) = O, 
n---~ oo 

as asserted in Theorem 3.3. �9 

P roo f  of  Theorem 3.4. The composi te  system in Fig. 1.1 with ~ and K as in the 
theorem is governed by state space equations 

:~ = F(x ,  w, u*(~, G~(~, y))), ~ = F(~, w, u*(r GI(~, y))), 

z = Gl(x ,  w, u*(~, G~(~, y))), (4.7) 

where 
y = G2(x, w). 

I f x  = (, we see from the first two equations that  2 = ~. Thus, if if(0) = ~(0) = 0 and 
a sequence 5 e l~r is fed in, it follows that  Y(k) = ~(k) for all k = 0, 1, 2 . . . . .  and hence 

* ~  I ' *  ~(k) u*(~(k), O~(~(k), ; (k)))  u (x(k), = = C2(x(k), ;(k))) = u*(~(k), 5(k)) 

for all k. F rom this we easily see that  the closed-loop IO map T~w with the out- 
put  feedback K is the same as with the full information control ler  u = u*(x, w) in 
Recipe 3.1. 

Now, assume, in addition, that  G2(x, w) = G2(w), and that  the full information 
scheme in Recipe 3.1 is asymptotical ly e-stable. Then, for any input string 5 ~ 12+ 
and any initial state x, limk_.oo e(~(k)) = 0 if {~(k)}k_> o is generated by 

~(k + 1) F(~(k ) , 5 ( k ) ,  * -" = u (x(k), 5(k))). (4.8) 

[xl 
Now, if the sequence 5 is fed into the system (4.7) which is in initial state ~ , then 

the resulting sequences of states ff and ~ are generated by (4.8) but  with different 
initializations ~(0) = x and ~(0) = ~. F r o m  the e-stability of the full information 
configuration, we now see that both  

lim e(:~(k)) = 0 
k--*oo 

and 
lim e(~(k)) = O, 
k ~ o o  

and hence the system (4.7) is e-stable in this case. �9 
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5. A Practical Refinement 

The most difficult part of the recipe is computing the energy function e: X --. N+. 
Once e is computed we must compute max-min points (w*, u*) for the function 

Q(x, w, u) = e(F(x, w, u)) + IlGl(x, w, u)[I 2 - Ilwll 2. 

We saw in Proposition 3.2 how these critical points may arise from max-min points 
(~*, if*) for an energy function g defined on/2+-strings: 

e(x ,  ~,  ~) = II~-~ (~, a)ll 2 - 11~112. 

We now show an alternative method for finding the max-min points (w*, u*) and 
(~*, ~'*) which bypasses having to first solve the (E) equation for e. In this method, 
we introduce the Hamiltonian associated with the system N by 

H(p, x, w, u) = p 'F(x ,  w, u) + Ilal(x, w, u)ll 2 - Ilwll 2. (5.1) 

Here we assume that the state space X is Nn and p is an n-dimensional column 
vector. We shall show that (~*, if*) can be found by finding an appropriate solution 
to the following coupled system of recurrence relations, called the associated Hamil- 
tonian system: 

(~*(k), ~'*(k)) = arg crit H ( i ( k  + 1), 2*(k), w, u), (5.2) 
(w,u) 

2*(k + 1) = F(~*(k), ff~*(k), ff*(k)), 2*(0) = x, (5.3) 

i(k) = VxH(i(k + 1), 2*(k), ff~*(k), ff*(k)), (5.4) 

and 

lim/~(k) = O. (5.5) 
k-.-~ oo 

Theorem 5.1. Suppose a smooth solution e: X --* ~+ of (E) with equality exists. 
Then there exists a sequence i =  {i(k)}~ o of costate vectors and a sequence 
2 = {2*(k)}k> o of state vectors such that {Px, 2", if*, if*} satisfies the Hamiltonian 
system equations (5.2), (5.3), and (5.4). I f  limk~oo ~*(k) = 0 and 0 is a critical point of 
e, then also (5.5) is satisfied. Moreover, the controller u = u*(x, w) in Recipe 3.1 is a 
solution of the equation 

Due(x, w, u)r[/~(0)] + 2OuGl(x, w, u)r[Gl(x, w, u)] = 0, (5.6) 

where ~(k) refers to the solution •k) of (5.1)-(5.5) with initial condition 2*(0) = 
e(x,  w, u). 

Proof. Let us set 

Q(x, w, u) = e(e(x, w, u)) + I l a l ( x ,  w, u)ll 2 - NwlL 2. 

Comparing (5.6) and (5.1) we see that 

D(w,u)n(p, x, w, u) = D(w,u)Q(x, w, u), 

(5.7) 

(5.8) 
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if we set/~ = Ve(F(x, w, u)). Hence, if we set 

(w*, u*) = arg max rain Q(x, w, u), (5.9) 
w u 

(5.7) gives 

(~*, u*) = arg crit H(p, x, w, u) when 13 = Ve(F(x, w*, u*)). (5.10) 
(w, u) 

Now, in general, define sequences 2" ,  ~*,  tiff, and ff by the equations 

(~*(k), ff*(k)) = arg max min Q(2(k), w, u), (5.11) 
w u 

2*(k + 1) = F(2*(k), ~*(k), ff*(k)), 2*(0) = x, (5.12) 

~*(k) = Ve(2*(k)). (5.13) 

Then, by substituting (5.11)-(5.13) into (5.9) and (5.10), we verify (5.2), while (5.3) is 
the same as (5.12). To prove (5.4), we use the assumption that  e satisfies (E) with 
equality 

e(x) = max min Q(x, w, u) 
w u 

= Q(x,  ~*x, u*~), 

where Q is given by (5.7). Differentiate both  sides with respect to x and use that  
(w*, u*) is a critical point  for Q(x, . ,  .) to get 

De(x) = D:,Q(x, w*, u*) 

�9 . �9 2DGI(x , * �9 = De(F(x, w*, ux) ) DxV(x, w~, u*) + w;;, u*)[Q(x, w;;, u*)] T 

- -  2 W  T. 

Take transposes and use (5.11), (5.3), and (5.13) and the definition (5.1) of H to get 
(5.4). Finally, if limk-,~ 2*(k) = 0 and 0 is assumed to be a critical point  for e, we 
get that 

lim if(k) = lim Ve(2*(k)) = O. 
k---r ao  k---~ oo 

Finally, by definition, u = u*(x, w) is a critical point  of Q(x, w, u) with respect to 
the variable u. Thus u = u*(x, w) satisfies 

D,Q(x, w, u) = 0. (5.14) 

By substituting in (5.7) for Q and using that, in general, ~'(0) = Ve(x) if 2*(0) = x, 
we get (5.6) from (5.14). II 

A crucial point  in the p roof  of Theorem 3.1 is that  the values of e are nonnegative 
real numbers,  i.e., that  e have a global minimum at 0. A necessary condit ion for 0 
to be a local minimum for e is that  D2e(O) (the Hessian of e at 0) be positive 
semidefinite. A sufficient condit ion for 0 to be a global minimum is that  D2e(O) be 
positive definite and that  D2e(x) be positive semidefinite for all x ~ X. In the 
Hamil tonian  formulation,  ~(0) corresponds to Ve(x), and hence the derivative 
Dxi~(0) of~'(0), with respect to the initial condit ion 2*(0) = x, corresponds to D2e(x). 
In this way, we arrive at a necessary condit ion (D~i~(0) > 0) and a sufficient condit ion 
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(Dx~(O) > 0 and D2~(x)  > 0 for all x) in terms of the Hamiltonian formulation for 
solutions to (FC) to exist. 

For examples with mild nonlinearities it is sometimes possible to solve the 
Hamiltonian system (5.2)-(5.5) for the critical point (~*, if*); we shall illustrate this 
with an example in the next section. Once (~*, fi'*) is found we can define e by 

e(x) = e(x, r a*). 

The second major computational hurdle in the implementation of Recipe 3.1 is the 
computation of u*(x, w). In practice this should not be so difficult, since u* arises 
as arg min, Q and minima are readily approximated numerically by the method of 
gradient descent. Given an initial guess u~ w), a next approximation to u* is given 
by 

u**(x, w) = u~ w) - tVO(x,  w, u~ w)) 
u 

for a t > 0. The point is that we arrive at an excellent approximation to u*(x, w) in 
very few steps, if the initial guess is reasonably good. We expect such would be the 
case in real time control problems after a brief warm-up time. 

6. An  E x a m p l e  

We illustrate the theory O f the preceding sections with a special class of plants 
for which the recipe is more tractable. A similar type of example is discussed in 
greater detail in [BH3]; however, there the solution was not derived via the Hamil- 
tonian system (5.1)-(5.5). We assume that the plant ~ in Fig. 1.2 has state space 
equations of the form 

2 = F(x,  w, u) = A x  + B l w  + B2u , 

(ML) z = Gl(x, w, u) = M ( C l x  + D12u), 

,=[Xwj. 
Here A: 32 ~ X, B1: W ~ X, BE: U --, X, Cl: X ~ Z, D t 2: U --* Z are linear transfor- 
mations, and M: Z -* Z is a (possibly) nonlinear mapping. The state space X, the 
input spaces U and W, and the output spaces Z and Y are all assumed to be 
finite-dimensional linear spaces. Thus, N is of the form of a linear IO map composed 
with a memoryless nonlinearity M on the output space Z. The form of the equation 
for y means that we will ideal with the (FC) problem and Recipe 3.1. Note that the 
assumption (W) below is satisfied if the memoryless term M is strictly convex. 

The or e m 6.1. Let  A, Bt ,  B2, C1, D12 , and M be as in (ML). Set 

W(a) = DM(a)T[M(a)] ,  

A • = A -- B 2 D ~ C 1 ,  

P~s = the spectral projection for  A x associated with eigenvalues 
outside the unit disk, 

A~s = A • Jim P~s, B2. s - P~s B 2, 
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and define L: Im(P.~) r --* Im P2s by 

Assume: 

(u) 

(w) 
(L) 

and 

(A) 

J. A. Ball and J. W. Helton 

o9 
L(p) ~S ~ • - (n+ l )  -1  -1 1 T -1  T x T}-(n+I)D } .  --. = ( A J  B2,~Dx2{W (-~(D12) B2(A 

/1=0 

1 ~ (A~,~)_(,+I)B1B~(A~f)_(n+I)p" 
q- 2 n=0 

A x has no eigenvalues on the unit circle; 

W is a diffeomorphism on Z; 

L is a diffeomorphism from Im(P~,) T onto Im P~, ; 

a(A) c A = {z ~ C: Izl < 1}. 

Then a solution (g(k), ~*(k), -'* -'* w~ (k), u x (k) ) of the Hamiltonian system (5.1)-(5.4) asso- 
ciated with (ML) is given by 

~(k) • -k -1 • = (Aa~) L (P~sx), (6.1) 

~ $  l l g tT (Ax  T ~ - ( k + l ) 1 - 1 ( D x  X) ,  (6.2) 
W~ : 5 " 1  ~ZXas ! a.~ ~* as 

k - 1  
2*(k )  (A • x + y~ (A • ~ 1 r • -1 • -1 = ) [ ~ B 1 B  l(A,~s ) L ( P ~ s x )  + B 2 D 1 2 0 k + l _ l ]  , (6.3) 

/=0 

ff*(k) Di~(Sk -'* = - C~x (k)), (6.4) 

where 

~k -1  1 T -1 T x T  - (k+l )  -1  x = W (-~(Da2) B2o,(Aa~ ) L (P~,sx)). (6.5) 

The associated energy function e(x) = g(x, ff~*, ~*) is given by 

e(x) = ~, [ ][M(6k)112 _ �88 I[Br,( A• T) -kL-1 (p .  x)II 2 ], (6.6) 
k=O 

and the control u = u*(x, w) given by (5.6) satisfies the equation 

BrL-X(P*.~(Ax + n lw  + Bzu)) + 2D~2W(Clx + Olzu) = O. 

Proof. Our  task is to solve the Hamil tonian system of equations (5.1)-(5.5) special- 
ized to a system of the form (ML). We first note that  the Hamil tonian H(p, x, w, u) 
given by (5.1) becomes 

n(p, x, w, u) = p . (Ax  + Blw + B2u) + IIM o (Clx + O12u)[I 2 - Ilwll 2. (6.7) 

Therefore, the derivative with respect to the state variable x in direction h is given by 

D~n(p, x, w, u)[hi = p rAh + 2 (CrDM(a)[M(,r)], h)  

= (ATp, h) + 2(CTDM(a)[M(a)],  h), 
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where we have set 
cr = C I x  + D12u , 

so the gradient of H is given by 

VxH(p,  x, w, u) = A r p  + 2CrDM(a)r[M(a)]. 

Thus, the recursion (5.4) for the costate vector p becomes 

~(k) = AT~(k  + 1) + 2CrW(f f*(k)) ,  

where 
~*(k) = a(~*(k), ff*(k)) 

= Ci~*(k ) + Ol2ff*(k), 

and, in general, we have set 

W(a) = DM(tr)r[M(tr)] .  

Next, we wish to solve (5.2) 

(ff*(k), ff*(k)) = arg crit n ( ~ ( k  + 1), Y*(k), w, u) 
w,u  

for ff*(k) and fi'*(k). To do this, we compute 

DwH(p, x, w, u)[h] = p ' B i h  - 2(w, h) 

= ( B r p  - 2w, h).  

This quantity being equal to zero in all directions h forces 

~*(k) = �89  + 1). 

Similarly, from 

D,H(p,  x, w, u) [k] = ( B r p  + 2Dr2 W(a), k> = O, 

in all directions k we get 

2O~z W(a  ) = - B~p. 

Using our assumption that D12 is invertible we can rewrite this as 

w ( ~ * ( k ) ) =  1 T - 1  T-. --~(D12 ) B 2 p ( k  d- 1). 

If we now plug (6.13) into the recursion (6.9) for if(k) we obtain 

T 1 T - 1  T -~ ~(k) = ATff(k  + 1) + 2C 1 {-~(D12) BEp(k  + 1)} 

= A • rff(k + 1), 

where we have set 
A x = A - - B 2 D ~ C  1. 

A forward time recursion for ff is therefore given by 

~(k + 1) = (A x T)-i~(k),  ~(0) = Po, 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

(6.15) 
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which has the solution 
~(k) = (A • T)-kpo, (6.16) 

where fi(O) = Po is to be determined. Plugging (6.16) into the expressions (6.12) and 
(6.13) and using assumption (W) leads to 

~*(k) = 1 v • (6.17) ~B 1 (A r)-k-ipo 

and 
~*(k) -1 1 r - 1  r x = W  (-~(D12) B2(A T)-k-lpo). 

From a*(k) = C1 ~*(k) + D12 ff*(k) we can solve this last expression for ff*(k) to get 

- 1  - 1  1 T - 1  T x T - k - 1  ff*(k) = - D ; ~ C ~ * ( k )  + D,2 W (-~(D12) B2(A ) Po). (6.18) 

We next impose the condition that if* ~ 12+, #* e/2+; it turns out that these 
conditions uniquely determine Po. From ~* e 12+ we see that Po e Im(P~) T, where 
Pfs in the Riesz spectral projection of A • associated with eigenvalues of modulus 
larger than 1 (here we use assumption (U). To analyze the meaning of if* e Iv z+ we 
introduce the Fourier (or Z - )  transform; in general, for a sequence ~ e Ix 2+ denote 
by 2 the H~-function given by 

~(z) = ~ ~(k )z  k. 
k = 0  

From the state space equations 

and 

we get 

~*(k + i) = A~(k) + B,#*(k)  + Bzff*(k), 

#*(k) = 1BT(A• r)-k-~po, 

~*(0)  = x, 

2(z) = (I -- z A ) - l x  + 2(1 - zA)- IBIBT(I  - z(A • r)-i)-i(A• T)-ip 0 

+ Z(I -- zA)-iB2~(z). 

Plugging this into the Fourier transformed version of (6.18) gives 

z zA)_iB1BT( I T)_!)_I(A• T)_lp ~ a*(z) = - D ; 1 C 1  (I - z A ) - l x  + ~(I -- z (A x 

+ z(I - zA)- lB2a*(z)}  

+ D(~ ~ W-I(- �89215 
k = 0  

Solve for fi*(z) to get 

Z 
F(z)a*(z) = -- C1 (I - zA) -~ x + ~ C 1 (I - zA) -1Bi BT(I -- z(A • r ) - l ) - i  (A • w)-i PO 

+ ~ W-~(--�89215 (6.19) 
k = O  
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where we have set 
F(z) = DiE + zCi(I - zA)-IB2 . (6.20) 

Note that then F(z) -1 is given by 

F ( z )  -1 = - zD; Cl(Z - z A  x ) - l B 2 D ; 1 ,  

where A • is an in (6.15). Note that assumption (A) and the condition Po ~ Im(P~s) T 
imply that the right-hand side of (6.19) is in Hz2; hence, by a computation as in 
Theorem 1.2 and 1.3 from [BR], we can show from (6.19) that ~* e Hr 2 is equivalent 
to 

• - n - 1  - 1 . ~  - 1  1 T - 1  T x W ( 2(D12) B2(A T)-("+l)p0 ) (Aas) B2asD12 --- 
( n=O 

--  k=i ~ �89176 =0' 

(6.21) 

where we have set Bas = PXsB 2. Define L: Im(paXs) T ~ Im P2 s by 

• - ( .+1)  -1  [ -1  i - i  T • L(p)= , . .  (A.s) B2asD12" W ( - 5 ( O 1 2 )  B2(A T)-(n+l)p) 
L n = 0  

--k=l ~ �89 B1BT(A:sT)-("+I-k)PI" (6.22) 

With a little algebra we can show that L, defined as in (6.22), is identical to L having 
the more symmetric form as given in the statement of the theorem; we postpone the 
verification of this until after the proof of Theorem 6.1. With L defined as in (6.22) 
we see that condition (6.21) can be expressed as 

L(po) = ~ (A2~)-("+I)Bza,D;~C1A"x 
p=o (6.23) 
Fx. 

Note that F is a solution of the Stein equation 

F (A~) -1FA x -1 -1 
- -  = (Aas) B2asD12 Ci, (6.24) 

and since both a(A) and a(A~) are contained in A, F is uniquely determined as a 
solution of (6.24). On the other hand, it is easy to verify that Pa~,: X ~ Im Pa~s solves 
(6.24); we conclude that F = P~ and hence (6.23) takes the form 

L(Po) = P2,x. 

Using assumption (L) we finally solve for Po: 

Po = L-t(P~,x) �9 (6.25) 

Verification of the statements in Theorem 6.1 is now a routine matter. 
The proof of theorem 6.1 is thus complete once we verify 

Lemma 6.2. The mapping L: Im(P,~s) r -* Im P~ given by (6.22) is identical to the 
mapping L given in the statement of Theorem 6.1. 
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Note that L, as given in (6.22), can be expressed as L = L 1  + L2 

Li(p ) = ~ t~x~-( ,+l)n  n - i W - i  t l tDT ~_IBTtA• ~ 
n = 0  ~ : ' a s )  a-"2asa/12 t - - 2 ~  1 2 )  2 ~, ) p ) ,  

and 

1 ~ ~ tAX~_(.+l) B D - i C  A k-l13 "T[AxT't-(n+I-k). L2(p) = --~ t a s l  2as  12 1 "Ul"Ul  ~.z~-as ] I j "  
n = l  k = l  

The content of the lemma is the identity 

1 ~ :A x ~-(n+I)B BTtA x T ] - ( n + l ) .  Lz(P) = ~ t asI 1 i t ,~ J r" 
n=O 

To simplify L2, the first step is to use the identity 

-B2Dl12C1 = A x - A. 

Substitution of this into (6.26) gives 

1 
L 2 = ~n_~l ~ (Aa~)-?"+i)[A x _ AqAk-1B  n T t ,  xT,-, ,+i-k) 

= k = l  A 1 J ' l  ~Z~as ] 

where 

2 n = l  k = l  

Yk,. = (A{s)-"A k-1 B~ B ~ ( A ~ f )  -("+i-k) 

and 

(6.26) 

(6.27) 

Recall that in order for the formulas (6.1)-(6.5) to generate a solution of (FC) 
(including the stability constraint), we require also that the function e given by (6.6) 
has nonnegative values. It is interesting to analyze this explicitly for the linear case 

Z k n = (A • )-(n+i)AkB B TIA • T~-(n+i-k) 
. . . .  ! 1 1 ~ . s  J .-, (6.28) 

Note that Yk+i,.+i = Zg,. and hence the series in (6:2~/) telescopes. Explicitly, we 
have 

n=O k = 0  n = l  k = l  

n=O k = 0  n = l  k = l  n = l  n=O 

Recalling (6.28), we get 

1 
L2 ~-~ ~ (AX)-(n+I)B1BT(AxsT)-(n+I) 

n = 0  

as required. 
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(M(a) = a, W(a) = a). Then e(x) can be written out explicitly as 

e(x) = ~ (L-lta• D-lnT-II~T ( A x T ~ - ( k + I ) I - 1 D x y  x 
~Zaas ! ~U,2as.V12 .t.,,12 a . , 2 a s l Z a a s  ] z-~ i a s  "~', Pas x )  

k=O 

1 /-,~' (L_I(AX-k T x T - k  - 1  x x ) B1BI(A ) L PasX, Pasx) 
4 k=o 

4 L-1 t~• n - l t n T  ~-lBr, s(A~sr)-tk+l)L-I V a a s  ] ~ ' 2 a s  a~'l 2 \ a ' l  2 ! 
k=O 

_ _  1 x x - --~(LP.sx,  Pasx). 

Thus the condition that e(x) > 0 for all x is equivalent to - L being positive definite. 
From the formula for L in Theorem 6.1 we see that, in general, L satisfies the 
nonlinear Stein equation 

[L - (Aa~) -1" L" (A,~r) -a ] (p) = (A,~) -~ B2,sO;~ W-X(-�89 x r)-Xp) 

1 x - 1  T x T  - 1  + g(A,s ) B~B~(Aas ) p. (6.29) 

For  the linear case where W = identity map, we see that ( - 2 L )  satisfies 

( -  2L) -- (A,~s)-l(-- 2L)(a,~sr) -1 

(A,~s)-lBiBrl(AaXsr)-i x -1  -1 r - 1  r xT-1 = --(Aas ) B2asD12(D12) Bz(A ) .  (6.30) 

This Stein equation is the discrete-time analogue of one of the Riccati equations 
occurring in [ D G K F ]  (actually ( -  2L) -1 corresponds to the solution of one of the 
Riccati equations in [DGKF]) ;  a second Stein equation is not relevant for the case 
here since we are assuming that a ( A ) ~  A. In any case, our nonlinear theory 
specialized to the linear case recovers the result that solutions of the H ~ control 
problem for the linear plant given by (ML) (with M = identity) exist if and only if 
the solution ( -  2L) of the Stein equation (6.30) is positive definite. 

Appendix. Proof of Lemma 2.2 

In this appendix we present the proof of Lemma 2.2. 
Let the function f and the points (r*, s* )=  ((r*, * * r_), (s+, s*)) and q~(r) = 

(q~+(r), (p_if)) be as in the statement of the lemma. 
We prove that (r*, r*) is a max-min  point for W by verifying the conditions of 

Lemma 2.1. We first verify that r* = (r*, r*) is a critical point for W. By assumption 
(r*, s*) is a max-min  point for f and for each fixed r, ~0(r) is a max-min  point for 
~k r. By necessity in Lemma 2.1, we see that (r*, s*) is a critical point for f ,  so 

Df(r*, s*)[(h, k)] = 0 for all (h, k) e T, ,~  x T~,5 ~, (A.1) 
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and, in particular, ~p(r) is a critical point  for ~,, so 

Df(r, q~(r))[(0, k)] = 0 for all k ~ T~(,)6 e. (A.2) 

In particular, when r = r* from A. 1 we conclude that 

Df(r , , s , )[ (O,k)]=O for all k ~ T~,re. 

By the assumed uniqueness of critical points, we conclude that ~0(r*) = s*. F rom 
the chain rule we have 

OW(r) [hi = Of(r, ~p(r)) [(h, O~o(r) [h])].  (A.3) 

F rom (A.2) we see that this vanishes for all h if and only if Df(r, ~o(r)) = 0, i.e., if and 
only if r = r*. Thus, ~P has a unique critical point  at r = r*. 

To check that r* is a m a x - m i n  point for qu we must  check the Hessian for ~t' at 
r*. Differentiating (A.3) gives 

O2W(r) [k, h] = Dr {Df(r, cp(r)) [(h, Do(r) [h])]  } [k] 

= D2f(r, ~p(r))[(k, Do(r ) [k]), (h, Do(r ) [h])]  

+ Df(r, ~p(r))[h, D2q~(r)[k, h]]. 

At r = r*, this collapses to 

D2~p(r *) [k, h] = D2f(r *, tp(r*)) [(k, Dqg(r*) [k]), (h, D~o(r*) [h])].  

Write the full Hessian o f f  at (r*, q~(r*)) in the form 

B T 

where 

D2f(r *, q(r*))F(h, 0), (h, 0)] = hrAh, 

D2f(r *, ~o(r*))E(O, k), (h, 0)] = hrBk, 

D2f(r *, r k), (0, k)] = krCk. 

The assumptions on the Hessians imply that [ A B ]  B r and C are invertible. 

On the other hand, if we differentiate the identity 

Of(r, ~o(r))[(0, h)] = 0, 

with respect to r we get 

O2f(r, ~p(r))[(k, O~p(r)[k]), (0, h)] = 0, 

i.e., 

0 = DZf(r, tp(r))[(k, 0), (0, h)] + D2f(r, ~o(r))[(0, Dcp(r)[k]), (0, h)]. 

Evaluation at r = r* gives 

hrBTk + hTCDtp(r*)[k] = 0 
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from which we conclude 
CDcp(r*) = - B r. 

As we already observed that C is invertible, this gives 

Dq~(r*) = - C -1B r. 

Thus D2qJ(r *) [k, hi takes the form 
B I 

D2~(r*)[k, h i =  hT[I, Dq~(r*)r][ D ClIDq~(r , )]k  

= hT{A - 2BC-~B T + (BC-~)C(C-~BT)}k (A.4) 

= hT{A BC-1BT}k. 

By a Schur complement argument (see, e.g., page 656 of [K]) the invertibility of 

i Br and of C implies that of A - BC -1 B r. Thus DZ~(r *) is invertible. 

We now write h e T,,Ninthetiner formofh = (h+, h_) e T~,+N+ x T,_,~_ and simi- 
larlyk = (k+, k_)e T ~ +  x T~,_~_. This induces natural finer decompositions of 

rA++ A+_I,  
A = LA+T  - A__J 

I-B++ B+_-J, 
B = LB_+ B__J 

<7:-] c = Lc~- 

the matrices A, B, C as 

The assumption that (r*, s*) is a max-min point for f implies by Lemma 2.1 that 

[ A - -  1 
n__ 

B_ T_ C__ > 0, (A.5) 

and that 

_ n _+  ,_,+.+r"++ ,,++-it++, c_+]<o. (A.6) 

The assumption that s* is a max-min point for Wr* means 

C__ > 0 (A.7) 
and 

C++ - C+_ C__ r < 0. (A.8) 

From (A.5) and (A.7) we get 

A__ -- B__CZX__Br__ > 0, (A.9) 

by a Schur complement argument. To show that r* is a max-rain point for W, by 
Lemma 2.1 and formula (A.4) for D2~g(r*), we must check that 

rA -- BC-1BT]--  > O. 
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Since C__ is invertible, the blocks of C -1 can be computed explicitly; we find 

C -1 = [ A-1 - A - 1 C + - C - 1 - -  l ,  

c-1_ + 

where A is the Schur complement 

- 1  T A ~= C++ - C + _ C _ _ C + _ .  

We can then compute 

[ A  --  B C - I B T ] _ _  = A _ _  --  [B_+B__] C-I  IBS+I 
LB_ _J 

= [ A _ _  --  B _ _ C 2 [ B T _ _ ]  

--  B _ _ C _ _ C + _ )  > 0 (B_+ -B__C__C+_)A-1 T --1 ( B _ + -  --1 T T 

by (A.9) and (A.8). The second Hessian check in Lemma 2.1, namely, that 

D++ - D+_D21_D_+ < O, 

where D = A - B C - 1 B  T, follows since A - B C - 1 B  T, as the Schur complement of 

cin[  B r  , has the appropriate number of positive and negative eigenvalues. 

In the proof of Proposition 3.2 we apply Lemma 2.2 to a case where the manifold 
5 e is infinite dimensional. The proof above goes through in this level of generality 
except for the last step, where the negative definiteness of 

D+ + - D+_DZI_D_ + (where D = A - B C - 1 B  r) 

was argued based on counting the number of positive and negative eigenvalues of 

[ BT . Nevertheless we can bootstrap to the infinite-dimensional case by re- 

stricting 5 e to finite-dimensional submanifolds and applying the above results. The 
details of this we leave to the reader. 

[BH1] 

[BH2] 

[BH3] 
[BH4] 

[BHW] 

[BR] 
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