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Abstract-The basic question of nonlinear H" control theory 
is to decide, for a given two port system, when does feedback 
exist which makes the full system dissipative and internally 
stable. This problem can also be viewed as an interesting ques- 
tion about circuits. Also, after translation, the problem has a 
game theoretic statement. This paper presents several necessary 
conditions for solutions to exist and gives sufficient conditions 
for a certain construction to lead to a solution. 

I. INTRODUCTION 
E basic question is, given a two port system, when T" does feedback exist which makes the full system 

dissipative and internally stable? This while an interesting 
question about circuits is also the central question in H" 
control. 

A. The System We Treat 
Here, W includes all command and disturbance signals, 

U is the control signal, Z is the error signal, Y is the 
measurement signal, and x E F= R" is the state of the 
system (see Fig. 1). The given system, described by state 
space equations 

&/dt = F ( x , W , U ) ,  Z=G,(x ,W,U) ,  

Y = GZ(x, W ,  U ) ,  (1) 

we take to be nonlinear but time invariant. We wish to 
find a nonlinear time-invariant feedback system 

dz/dt = f ( z , Y ) ,  U = g ( z , Y )  (2) 

which improves performance. We assume these systems 
are homogeneous throughout the entire paper, that is, 
that 

F ( O , O , O )  = 0,  G,(O,O,O) = 0, and G2(0,0,0) = 0 
(3) 

so (0,O) is an equilibrium point and that G,(x, W ,  U )  does 
not depend on U. The standard problem of H" control in 
the nonlinear setting is to find a stabilizing feedback law 
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Fig. 1 

(f, g) so that the resulting closed-loop system satisfies 

11z11; s Kllwll; 
for a preassigned tolerance level K ,  i.e., in the terminol- 
ogy of [34] and [25], the closed-loop system is dissipatine 
with respect to the particular energy supply rate d W ,  Z )  

A special case we emphasize is that of an Input AfJine 

F (  X, W ,  U )  = A( X )  + B,( X )  W + B2( x ) U  

= Kllwll; - Ilzll;. 
(IA) system where 

G,(x, W ,  U )  = C , ( X )  + D , , ( x ) U ,  
G , ( x ,  w, U )  = C , ( X )  + D,,(X)W (4) 

is an IA plant system, and 

f( z ,  Y )  = a( z )  + b ( z ) Y ,  g( Z ,  Y )  = C( Z )  + d(  z ) Y  
( 5 )  

is an IA compensator system. Homeogeneity for IA sys- 
tems is equivalent to 

A(0) = 0,  C,(O)=O, C,(O)=O, 

a(0) = 0 ,  c(0) = 0. (6) 
Also of significant physical importance is a (plant) sys- 

tem which is affine linear only in the disturbance W. We 
shall call such systems W-Input AfJine (WIA) systems. 

F ( x , W , U )  = A B ( x , U )  + B , ( x ) W  

G,(x, W ,  U )  = C , ( X ,  U ) ,  
G,(x, w, U )  = C,(X)  + D,,(X)W (7) 

is a WIA plant system. WIA systems include fully nonlin- 
ear classical control problems. Also, they have the ex- 
tremely appealing property that certain basic computions 
are possible for them. In this paper, we shall always seek 
IA compensators even for this very general class of plants. 
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B. Perspective 

A recent breakthrough in the linear H" theory was the 
derivation of elegant state space formulas for the solution 
of the standard linear H"-control problem in terms of the 
solutions of two Riccati equations (see [15]). This work, 
unlike earlier work in the H" theory which emphasized 
factorization of transfer functions and Nevanlinna-Pick 
interpolation in the frequency domain, operated exclu- 
sively in the time domain and drew strong parallels be- 
tween the H"-theory and the more established LQG 
control theory; in particular a separation principle, 
whereby the output feedback problem can be split into 
uncoupled state feedback and observation based state 
estimation problems as in the LQG case was presented. 
Now there have appeared a number of alternative deriva- 
tions of the formulas from [15], most also in the time 
domain. We mention in particular [31] which emphasizes 
the bounded real lemma and which was particularly in- 
fluential for the present paper; indeed, one level at which 
to read this paper is to specialize to the linear case and 
obtain an alternative motivation for the steps in [31]. 
There now have also appeared improved versions of the 
approach through factorization of transfer functions [91, 
1171, [191); we expect that some of these may also have 
extensions to nonlinear settings. 

The H" theory for the nonlinear setting is much less 
developed. The operator factorization approach of [3]-[61 
constructs a nonlinear fractional map to parameterize a 
large set of solutions of certain special cases of the 
nonlinear measurement feedback H"-control problem in 
the discrete time setting. Construction of the nonlinear 
system giving rise to the desired nonlinear fractional map 
was based on the assumption that it be a lossless dynami- 
cal system (with a nonnegative energy function on the 
state space balancing the integrated power consumed or 
put out by the input-output behavior). The authors later 
found (from C. Bymes and [32], [33]) that a general theory 
for such dynamical systems (both lossless and dissipative) 
has been laid out by Willems 1341 and Hill and Moylan 
[251. 

The first systematic use of the work of Hill-Moylan [25] 
on dissipative systems in H" control was by van der Schaft 
who in extremely valuable papers gave a coherent general 
theory as well as derivations of the Hamilton-Jacobi- 
Isaacs equations for IA systems with state feedback. Simi- 
lar work was done in 1121; there the performance measure 
was taken to be the supply rate associated with passivity 
rather than with finite gain, and hence the H"-control 
interpretation was missing. Closely related results appear 
in [71 (see also [41) for the problem in the discrete time 
setting; there, the authors ignorant of the work of Hill 
and Moylan, derived results very close to parts of [25]-[27] 
in the more involved context of making a system dissi- 
pative after feedback. This paper also treated a special 
case of the output feedback problem. The formula for the 
desired feedback involves the solution of a 
Hamilton-Jacobi equation and also can be derived di- 

rectly from game theory ideas. The general theory was 
used to work out explicit formulas for the case of linear 
systems composed with mild memoryless nonlinearities 
rather than for IA systems as in [121 and [321, 1331. 

A comprehensive treatment of H"-control theory from 
the point of view of game theory can now be found in [ll. 
In [32], [33] the general interpretation of the nonlinear 
H"-control problem as that of finding a feedback which 
makes the system dissipative in the sense of [341 was 
formulated, and the Hamilton-Jacobi equation for the 
state feedback problem was derived from this point of 
view. 

Most recently [29] presents sufficient conditions for a 
particular construction to yield a local solution of the 
output feedback nonlinear H"-control problem. There 
also the interpretation of the H"-problem as construction 
of a feedback which makes the system dissipative is 
prominent. 

The report [8] summarizes the work in nonlinear H"- 
control theory up to 1989, in particular [3]-[5] and the 
nonlinear commutant lifting method of [2] and [161, while 
[23] includes a summary of [71. 

The formulation of the nonlinear H"-control problem 
as presented here demands a choice of control law (state 
feedback or more generally output feedback) which guar- 
antees 1) asymptotic stability of the internal state of the 
closed-loop system when subjected to an arbitrary initial 
condition and zero external input, and 2) that the size of 
an error signal be bounded uniformly with respect to the 
worst case size of a disturbance command signal. The 
approach here (as well as in [32], [33], [29]) is to guarantee 
the latter dissipative inequality by the construction of an 
energy or storage function for the putative closed-loop 
system. Once this storage function is found, it can also be 
used (under sufficient observability assumptions) as a Lya- 
punov function to guarantee the internal stability require- 
ment. This dual use of the storage function was exploited 
systematically probably for the first time in the work of 
Hill and Moylan 1261, 1271 and later also in [12]. Starting in 
the 1970's there appeared the work of Gutman, Leitman, 
and Corless (see [20], [22], [13], [14]) which in some sense 
anticipated the H"-control theory in the nonlinear con- 
text. There it is assumed that a known Lyapunov function 
guarantees stability for a nominal plant which is subject to 
disturbances and parameter variations of some assumed 
size and depending on the state. The goal is to construct a 
state feedback which guarantees asymptotic stability for 
all admissible choices of the disturbances and parameter 
variations. The uncertainties are assumed to be of a 
deterministic rather than statistical form (just as in the 
IT-theory) and the goal is to guarantee stability (rather 
than a quantitative performance measure as in the H"- 
theory) over all admissible uncertainties (i.e., in the worst 
case). The strategy is to find a feedback (unfortunately 
possibly discontinuous) for which the assumed Lyapunov 
function for the nominal system also serves as a Lyapunov 
function for the closed-loop system for all admissible 
uncertainties; this leads to a min-max criterion on the 
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Lyapunov inequality as opposed to a min-max criterion on 
the dissipation inequality in the H"-theory. 

In this paper, we formulate the nonlinear Hm-problem 
as that of finding a stabilizing compensator so that the 
closed-loop system satisfies the hypotheses of the nonlin- 
ear bounded real lemma (see [25]). This leads us to a 
systematic analysis of possible interchanges of max and 
min and the derivation of several necessary conditions 
analogous to the two Riccati equations in the linear case 
for solutions to exist. We also present a recipe for a 
candidate solution and sufficient conditions for the recipe 
to give a solution. 

C. A Symbolic Algebra Package for Systems Theory 
The paper is also available in computer executable form 

for those who have Mathematica. It is a package which 
does noncommutative algebra, noncommutative direc- 
tional differentiation, etc., symbolically. Indeed all formu- 
las in this paper were first derived using this and the 
original version of this paper was [lo] which contained 
statements of the theorems here with formulas which 
could be all manipulated inside our noncommuting alge- 
bra package. Obtain [ 101 from ncalg@osiris.ucsd.edu. 

D. Conventions 
Assume z E R". The gradient of a scalar-valued func- 

tion g ( z )  will be a (column) vector V,g(z) with action on 
(column) vectors h E Rn denoted by V,(g(z)) * h 4 
(Vzg(z))Th.  D, denotes differential in a variable z.  For a 
scalar-valued function g ( z ) ,  D,g(z) = V:g(z). For a (col- 
umn) vector-valued function 

define D,( $( z ) )  = 

'21 

'92 

J*1 

We will not define 0, for row vectors. 
The paper is organized as follows. Section I1 recalls the 

theory of dissipative systems, Section I11 analyzes the 
nonlinear H"-control problem from the point of view of 
dissipative systems. Section IV develops some inter- 
changes of max. and min. to obtain some necessary condi- 
tions for solutions to exist. Section V develops the conse- 
quences of assuming the energy function has some special 
forms and presents our recipe with sufficient conditions 
for it to yield a solution. Section VI presents theorems for 

- 2  
w+F G1 I 

Fig. 2 

IA systems. Finally, Section VI1 presents a generalization 
of the separation principle to a general nonlinear setting. 

Most of the paper could have been presented at the 
more general level of WIA systems. For tutorial purposes, 
however, we chose to first present the results using IA 
systems in order to provide expressions with close connec- 
tions to the linear results in [15] and [31]. This has 
resulted in some redundancy, which we have attempted to 
minimize, in the results presented in Sections IV and VI. 

11. DISSIPATIVE SYSTEMS 

First we recall the bounded real lemma but we do so at 
a high level of generality (see Fig. 2). The system defini- 
tion is: 

dx/dt = F ( x , W ) ,  Z = G , ( x , W ) .  (8) 

For linear systems, this is 

F (  X, W )  = AX + B,W, G,( X, W )  = C,X + D,,W. 
(9) 

Define a finite-gain dissipative system with gain K to be a 
system for which 

~~111Zl12 dt I K/c111WI12 dt (10) 
t o  

where K is a constant, and x(t,) = 0. If K = 1 the system 
will be called dissipative. In circuit theory these would be 
called passive. This agrees with the notion of dissipative in 
[34], [25] with respect to the specific supply rate IlWIl2 - 

Define a storage or energy function on the state space 
11z112. 
to be a nonnegative function E satisfying 

and ~ ( 0 )  = 0. Hill and Moylan ([25]) showed that a system 
is dissipative if and only if an energy (storage) function 
(possibly extended real valued) exists. Under controllabil- 
ity assumptions, there exists an energy function with finite 
values. 

Given a differentiable real-valued function E on the 
state-space 2, we say that a system of the form (8) is 
€-dissipative provided that the energy Hamiltonian H 
defined by 

H =  IlGl(x,W)I12 - IIWI12 + VE(X) . F ( x , W )  (12) 

is nonpositive. That is, 0 2 H for all W and all x in the 
set of states reachable from 0 by the system. 

Theorem 2.1: (see [34], [251) Let E be a given nonnega- 
WIA systems analogous to those derived in Section IV for tive differentiable function with 4 0 )  = 0. Then a system 
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is E-dissipative if and only if E is a storage function for 
the system. In this case, the system is dissipative. 

Therefore the key issue in determining dissipativity in 
many cases is to find a nonnegative energy function E 

which makes a system E-dissipative. Note in the linear 
case the energy function is quadratic: 4 x 1  = xTXx,  XT = 

X. (To see this, use the Hill-Moylan minimal energy 
function; the infimum of quadratics is quadratic.) Thus, 
VE(X> = 2Xx. This gives the classical linear bounded real 
lemma ([31]). 

111. OUTPUT FEEDBACK TO hhUE SYSTEMS 
DISSIPATIVE 

We wish to analyze the dissipativity condition on two 
port systems with a one port system in feedback. The 
basic question is when does feedback exist which makes 
the full system dissipative and internally stable? This is 
the central question in H" control. 

A. Energy Balance Equations 
We begin with notation for analyzing the dissipativity of 

the systems obtained by connecting f ,g  to F,G. The 
energy function on the statespace is denoted by E .  H 
below is the Hamiltonian of the two systems where inputs 
are W ,  U, and Y 

By definition (see Section 11) the closed-loop system 
being €-dissipative corresponds to the Hamiltonian func- 
tion H above being nonpositive. 

To construct the closed-loop system, we connect the 
two systems in feedback, that is tie off U and Y with the 
substitutions Y + G,(x, W ,  U )  and U -+ g(z, Y 1. In the 
following, when we impose the IA assumptions [see (5 )  
and (611, we will specialize to a plant which satisfies 

and often to a compensator with 

d ( z )  = 0. (15) 

We will use the notations q , , ( W ,  x, z),  Ha, b,c,d(W, x, 2) 

to represent the Hamiltonian H (13) for a closed-loop 
system consisting of a general plant (1) with a general 
compensator (21, respectively with an IA compensator (5). 
In this notation f ,  g represent functions of z and Y and 
a, b , c , d  are variables, not functions, which may be re- 
placed by the values of functions defining the compen- 
sator at particular values of z. The two notations are 
related in the case of IA compensators (5 )  byq,,(W, x, z )  

Hamiltonian for the 
closed-loop system consisting of the plant (4) with com- 
- - Ha(*), b(z),c(z),d(z)(W7 x, z). The 

pensator (5)  under the assumptions (14) and (15) is given 
by 

H a ( z ) ,  b ( z ) ,  c(z),ti(W, X, 2) 

= V , E ( X , Z ) ~ ( A ( X )  + B , ( x ) W +  B , ( x ) c ( z ) )  

- W T W  + IlC,(x) + D,,(x)c(z)l12 

+VZE(% z > T ( b ( ~ ) ( C 2 ( X >  + D*l(X)W) + 4z)). 
(16) 

B. H" Problem 
Find f =f(z, Y ) ,  g = g(z, Y )  which make the closed- 

loop system dissipative and internally stable. 
This discussion and results about the linear problem, 

notably Peterson-Anderson-Jonckheere ([31]), lead us to 
formulate our H" control problem or dissipative feedback 
problem as follows: 

Find a nonnegative differentiable function E on 2 X Z 
with 4 0 )  = 0 so that there exist functions f = f(z, Y) ,  
g = g(z, Y) which satisfy the well-known dissipation 
inequality 

( E - D Z S F B K )  0 2  maxq , , (W,x ,z )  
x, 2, w 

where Y is given by G2(x, W, U ) .  

Also we wish to find formulas for or properties of the 
functions f, g .  

We refer to the above statement as the E - DZSFBK 
problem. We shall say that E is strictly positive if E(X) > 0 
whenever x # 0. To meet the internal stability constraint, 
it is often useful to have E proper or strictly positive. In 
our formulation of E - DISFBK, we make no such stipu- 
lation. In this paper, we shall separate the requirement 
that E be strictly positive and proper from other restric- 
tions on E. As we shall see, this is natural and informative. 

In practice, it may be difficult or nonessential that we 
find functions f ,  g so that maxWq,,(W, x, 2) I 0 for all 
x, 2; we will be satisfied if max,q,,(W, x ,  z )  s 0 for all 
x, z in some large region Cl G 2 X Z containing the equi- 
librium point (0,O). Then the closed-loop system still 
satisfies the input-output dissipation inequality as long as 
the state trajectory stays inside Cl. We refer to this 
modification of (E  - DZSFBK) as the regional ( E  - 
DISFBK ) problem. 

Positivity and properness are essential to the H" con- 
trol problem because they guarantee stability (but not 
necessarily asymptotic stability) of the closed-loop system 
for arbitrary L2 inputs. This is the technique which has 
been used in 1331 and [121. 

Theorem 3.2 (251: Suppose E is a proper nonnegative 
function on 2 x 37 and functions f ,  g are such that 

0 2 q , , ( W ,  x ,  z) 
for all W, x, z. Then the closed-loop system of Fig. 1 has 
the property that ( x ( t ) ,  z ( t ) )  remains in a bounded subset 
of 2 X Z for each choice of input function W f L2(0, m) 

when started in any state (x , , ,  z,,). 
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C. f i e  Max of H in W 
In the remainder of the paper (with the exception of 

Section VII, the Separation Principle), we will specialize 
to IA compensators having d ( z )  = 0. Often one finds that 

Ha*,%, z >  := m ~ H a , , , , , , ( W ,  x, z >  (17) 

is well behaved and is the first max taken in many ap- 
proaches to solving the problem. We sometimes relax the 
notation and write 

H*w = Ha*,r,(x, 2). (18) 
In light of the discussion in Section I, H*W has a physical 
interpretation. For a system with energy function E ,  one 
fixes a state (x, z )  and drives the system with the input W 
making the energy balance H*W for the system the least 
dissipative (at that instant). Thus, it is appropriate to call 
H* the worst Edissipation rate, which we abbreviate to 
worst Edissipation. 

can be computed concretely for IA and WIA 
systems by taking the gradient of H (16) in W and setting 
it to 0 to find the critical point W*. Substitute this back 
into (16) to get H*w. One obtains the following, under 
the assumptions G ,  = G,(x, U ) ,  G ,  = G,(x, W) and d(z) 
= 0 (i.e., (14) and (15) for IA systems) for both IA and 
WIA plants: 

W * ( x , z , b )  = +(B1(X)'VXE(X,Z) 

+D21(X)'bTV,+, 2 ) )  (19) 
and for WIA systems: 

H*W = C,(x,c)'C1(x,c) + V,~(x,z)'AB(x,c) 
+ v,e(x, z)'a + V,E(X, z ) ' ~ c , ( x )  

+ + V X € ( X ,  2)'B1(X)Bl(X)' VXE(X, 2) 

+ +Vxe(x, z ) T B l ( ~ ) D 2 1 ( ~ ) T b T  VZe(x, z )  

+ a  vZE(x, z)'be,(x)b' vZE(x, z ) .  (20) 
Note that W* does not depend on a or c. 

D. The Doyle-Glover-KhargonekarFrancis Simplifying 
Assumptions 

A special class of IA systems are those satisfying 

Dl,(X)'C1(X) = 0, B,(X)DZl(X)' = 0, 
el(x) = I ,  e 2 ( x )  = Z (21) 

denoted in this paper as the Doyle-Glover-Khargone- 
kar-Francis (DGKF) simplifying assumptions (see [151). 
These simplify algebra substantially so are good for tuto- 
rial purposes even though they are not satisfied in actual 
control problems. 

Iv .  NECESSARY CONDITIONS FOR SMOOTH SOLUTIONS 
OF E-DI,.!?FBK FOR INPUT A F F I N E  PLANTS 

In this section, we present conditions necessary for a 
smooth solution to the E - DISFBK problem for an IA 

plant to exist. These necessary conditions parallel those 
known in the linear case and give similar algebraic expres- 
sions. We also provide candidate functions a * ( z )  and 
c* (z )  for a feedback compensator and give plausible 
conditions under which the compensator must be given by 
these functions. This is a bit surprising. The function b(z)  
is not uniquely defined by these conditions. 

We begin by assuming we have a smooth solution to 
E-DZSFBK. As we shall see, crucial to the problem are the 
two sets 

Z,:= {(x,z):V,e(x,z) = 0 )  and (22) 
Nz := ( ( x , z ) :  z = 0). (23) 

We now list the assumptions which will be used in this 
section. Later there is a paragraph (after Theorem 4.2) 
which motivates these and some stronger assumptions. In 
this section we deal exclusively with IA systems which 
satisfy (14) and (15). We also assume the following: 

Al)  Energy functions are differentiable. 
A2) 2, is a graph over2,  i.e., 2, = {(x, cp(x)): x E a 

for some smooth function cp. 
A3) Vectors z and x are of the same dimension so 

the compensator state space Z can be identified 
with the plant state space 2. 

A4) D,(V, E ( X ,  z))lz= o ( x )  has full rank. 

For linear systems the energy function can be assumed 
to be a quadratic form which satisfies the assumption that 
2, is a graph over x if, for example, the form is positive 
definite. 

Lemma 4.1: Fix x and z. Then for homogeneous IA 
functions f(z, Y ) ,  g(z) ( 3 ,  

which gives the more explicit formulas 
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un(x) 
= [ - ~ 2 ( ~ > T e 2 ( ~ > - ' ~ 2 1 ( ~ ) ~ 1 ( ~ ~ T  + m T ] Y , ( x )  

+ ? ( X I T [  - B 1 ( X ) D 2 1 ( X ) T e 2 ( X ) - ' ~ 2 ( ~ ) ]  

+ C l ( X ) T C l ( X )  - c2(x>'e , (x) - 'C, (x> 

+ W I T [  B l ( x ) B , ( x ) T  - B 1 ( X ) D 2 1 ( X ) T  

*e2(x)  - l  D21(x)B1(x>T]&(x) (27) 

where the functions X and & are defined by 

X ( x )  = ; V , ~ ( x , c p ( x ) )  and Y , ( x )  = $ V , E ( X , O ) .  
(28) 

The minimizing c when z = cp(x) can be computed 

c * ( z )  = - e l ( x ) - 1 ( B 2 ( x ) T X ( x )  + D , , ( x ) ~ c , ( x ) ) .  

explicitly to be 

(29) 

The minimizing b when z = 0 will be computed explicitly 
in the proof. 

Proof Fix x , z .  
A) For z # 0 and any b , ~ : i n f , H * ~  = --CO unless z = 

cp(x). This is because the explicit form (20) for H*W 
contains a linearly, unless the coefficient of a is 0 (i.e., 
VZe(x, cp(x)) = 0). Here we have assumed that only z = 

cp(x) satisfies V, E ( X ,  z )  = 0. 
B) If cp(x) = z # 0, then is independent of a, b, 

and min, H*W = M ( x ) .  This identity and the minimizer 
c* (z )  are calculated by applying the change of notation 
(28) and calculating the critical c in the resulting expres- 
sion. The critical c is substituted back into the expression 
to obtain M ( x ) .  The main observation is that in the 
explicit form (20) for we have that V,E(X, z)lz=p(x) 
vanishes, thereby eliminating dependence on both a and 
b. 

C) If z = 0, then define q(x, 0) = V, E(X,  oITb and min- 
imize H*W over q to obtain that the minimizer b is given 
bY 

v z E ( X , O ) T b  = -2(C,(X)' + y r ( x ) T B 1 ( x ) D 2 1 ( x ) T )  

* e 2 ( x ) - l .  (30) 

Substituting this into H*w, we obtain min, H;&(x,z) = 

U y l ( X ) .  
Theorem 4.2: 
a) If there is a function E(X, z )  and an IA compensator 

system a ( z ) ,  b(z), c ( z )  making the closed-loop system E- 

dissipative, then the inequalities 

M ( x )  I 0 and UAy7(x)  I 0 

for all x have solutions X and Y, given by X ( x )  = 

(1/2) V, E ( X ,  cp(x)> and Y , ( x )  = (1/2) V, E ( X ,  0). 
b) If the function E in part a) is nonnegative with 

E ( O , O )  = 0, i.e., E-DZSFBK has a solution, then X ( x )  and 
Y , ( x )  are gradients of nonnegative functions, and Y , ( x )  - 
X ( x )  is the gradient of a function which is nonnegative 

near 0. In particular, the linearized problem has a solu- 
tion. 

Conversely, suppose the ( E-DZSFBK) expression has a 
saddle value in x, that is 

Z Z O  

If a particular nonnegative E defines X ( x ) , Y , ( x )  as in 
(28) which satisfy LAx(x) I 0 and UYZ(x) I 0 for all x 
and minimizing a, b, c for the expressions in (31) exist, 
then there is a solution to E-DZSFBK. 

It is worthwhile to note here that linear systems actu- 
ally satisfy the saddle point condition that the optimum 
values of x , a ,  b,c  in the expressions in (31) are also 
optimal in the expressions (32). The converse statement of 
this theorem illustrates that it is sufficient to have the 
slightly weaker saddle value condition with compensator 
functions defined by the minimizing a,  b, c of the left 
hand expressions for each z. In the nonlinear case, a 
saddle point will not exist in general. 

Proof of Theorem 4.2: Part a) The fonvard side of the 
theorem follows from (241, (25) and the fact that min max 
2 maxmin. To be more explicit, if the compensator func- 
tions a(z), b(z),  c(z )  make the closed-loop system E- 

dissipative, then for each fixed z E range(cp), z # O, 

= max M ( x )  
X E  rp-'(z) 

and for z = 0, 

o 2 maxHo,b(z) ,O,O(W,x,~)  2 max minH*W 
x ,  w x b  

= maxUH(x) .  
X 

(When z = O,C(Z)J,=~ = 0 = a(z) l ,=o eliminates the de- 
pendence of H on a and c.) Consequently, M ( x )  < 0 
and IAYZ(x) 5 0 for all x as required. Part b) We have 
& = VI),, where I,!J,(x) = (1/2)~(x,  O), and X = 

where I),(X) = (1/2)~(x,  cp(x>) (using V,E(X, cp(x>> = 0). 
Denote the linearization of E ( X ,  z )  about (0,O) by 

Here P,, = Y,, where Y , , x  is the linearization of &(XI 
at 0. Using the chain rule on X = VI),, we obtain that 
X I  = P,, + P l 2 D X c p ( O )  where X,x is the linearization of 
X ( x )  at 0. Using VZe(x, cp(x)) = 0, we obtain similarly 
that P& + P,,D,cp(O) = 0.  Then &, - X ,  = P , ,  - (P, ,  
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+ P,,D,cp(O)) = -PI2DXcp(O) and thus (ql - Xl )T  = 
- D, ~ p ( 0 ) ~ P ;  = D, cp(0)TP22 0, cp(0) 2 0. The quantity yI1 
- X ,  is the Hessian of t+!q - t,hz and thus Yf - X is the 
gradient of a locally nonnegative function. The proof that 
the linearization has a solution will be deferred until the 
discussion at the end of this section. 

For the converse, we need the following lemma. 
Lemma 4.3: Let F,Gl,G2 define an arbitrary (plant) 

system of the form (11, (2 )  and let E be a fixed nonnega- 
tive function on 2 X  2. If 

maxz+Omina,b,c,dmaxxmaxW H a , b , c , d ( W , X ,  O, 
and 

minb,cmax,maxW HO,b,(),d(W> x ,o )  5 

then there exists an homogeneous IA system (compensa- 
tor) f*(z, Y )  = a*(z )  + b*(z)Y,  g*(z,  Y) = c * ( z )  + 
d*(z)Y such that the closed-loop system solves E-DIS- 
FBK. 

Note that the letters a, b, c and d represent free 
parameters so that minimization is with respect to real 
numbers rather than functions. Combine this lemma with 
[lemma 4.1, (241, (2511 to see that E provides a solution to 
E-DISFBK. 

In the remainder of this paper, we will make the simpli- 
fying assumption that function cp defining the graph 2, 
is invertible. For linear systems, the standard Doyle- 
Glover-Khargonekar-Francis (DGKF) solution (maxi- 
mum-entropy solution) with X and Y invertible has this 
property. As a consequence nonlinear solutions lineariz- 
ing to it will also have the property near 0. When cp is 
invertible, the energy function can be transformed through 
a change of z coordinates so that Z ,  = { ( x ,  z ) :  x = z }  
since under the change of variables cp(z), the system 

i = (Vcp(z)>-'(ao cp)(z) + (vcp(z))-'(bo c p ) ( Z ) Y ,  
U = c o q J ( z )  

provides the same feedback as the system a(z), b(z) ,  c ( z )  
in the original z coordinates but satisfies in addition 
Z,  = { ( x ,  z ) :  x = z}. Indeed henceforth we always use 

V,E( x ,  z )  = 0 if and only if z = x .  (33) 

For linear systems, this implies that the gradient of E 

can be expressed entirely in terms of the DGKF X and Y 

+ V , E ( X , O )  = q ( x ) = Y - ' x ,  

; V,E(X, x )  = X ( x )  =xx 

L4x( x )  = 0, 

and that 

H Y I (  x )  = 0 

are the DGKF Riccati equations for X and for the inverse 
of Y ,  respectively, (for the case where Y is invertible). 
Also, the minimizing b and c in Lemma 4.1 (linear case) 
are independent of x and thus provide functions with 
which to construct the central compensator (see e.g., [311). 

In the nonlinear case (IA system), assumption Al)  
implies that the minimizing c in Lemma 4.1 occurs when 

z = x and thus defines a function c* of z only [see (2911 
which may be used as a candidate function for construct- 
ing the compensator. This formula agrees with that found 
for the state feedback problem by [l], [321,[331, [12l for IA 
systems and [7]. Unfortunately, the minimizing b occur- 
ring when z = 0 is a function of x so that a candidate 
function b(z )  for the compensator is not determined by 
the minimization process. 

The next result gives certain conditions which force the 
form of a(z) and c (z )  when an IA compensator (a(z) ,  
b(z),  c ( z ) )  is a solution of ( E  - DISFBK). 

Theorem 4.4: Separation Principle. Suppose that an en- 
ergy function E ( X ,  z )  satisfies assumptions Al)-A4) and 
M ( x )  = 0 for all x. If the functions u(z) ,b(z ) ,c (z )  
solve (E-DISFBK), then c (z )  is given by c* (z )  in (29) 
(with p(x) = x )  and u(z )  is given by 

a*( Z )  = F( 2, W*( Z ,  Z ,  b( z ) ) ,  c * ( z ) )  

+ b ( z ) [ - G z ( z , W * ( z ,  z ,b(z) ) ) l  

The theorem has a physical interpretation. The key 
hypothesis LAX = 0 says that if one chooses memoryless 
state feedback which produces the most negative E-dis- 
sipation rate possible and obtains an €-dissipation rate 
equal to o (recall, this means ff$~,b(L),C*(Z)(z, 2) = 

M ( z )  = 0, for all states), then any solution to (E-  
DISFBK) has a ( ~ )  and c ( z )  prescribed as above. In the 
linear case, the result has the interpretation that the 
output feedback problem can be split into two separate 
pieces: the state feedback problem and the problem of 
state estimation via output injection (see [311, [151). 

Proofi Let a(z ) ,b ( z ) , c ( z )  denote a solution to ( E -  

DISFBK) whose existence is guaranteed by assumption. 
Then c ( z )  must satisfy 

c ( z )  = argminHz:,(z, z )  
C 

because another c ( z )  will, for some z ,  make 

Thus, c ( z )  = c*(z). 

satisfy 
As a solution to (E-DISFBK), a(z), b(z) ,  c*(z )  will also 

(35) * W  Ha(z),b(z),c*(z)(x, z ,  

for all x ,  z .  Lemma 4.1 implies that If,*(:, b ( z ) ,  c * ( z J x ,  2) = 

M ( x )  = 0 on the diagonal z = x ,  so for each fixed x it 
achieves its maximum as a function of z at z = x .  Hence, 
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so 

But 

by definition of c*(z). Hence 

Now from (35) and (36) combined with assumptions 
Al)-A4), we have the hypotheses for the Separation 
Principle presented in Section VI1 (specialized to the IA 

W 
Theorem 4.5: A necessary condition for the system 

a*(z), b(z), c * ( z )  with functions a*, c* given by (34) and 
(29) to solve E-DISFBK is k(x, z )  5 0 for all x ,  z where k 
is 

case). Equation (34) now follows from (48). 

where 
6 = 3 V2E(X, Z ) ' b ( Z )  

+ (t VxE(X, Z)'B1(X)D21(4' - X(Z)TB1(Z)D21(Z)T 

+C2(Xf - Cz(Z)').,(.)-'. (39) 
Since he2(x)bT 2 0 for any b(z),  x, z ,  and 

* W  
H a * ( z ) , b ( z ) , c * ( z ) ( X I  2 )  5 0 

by assumption, the conclusion follows. 
We conclude this section with some connections be- 

tween our results on nonlinear closed-loop systems given 
by (1)-(5) [satisfying (141, (15)] and their linearizations 

dx/dt = A,x + B,(O)W + B2(0)U 
z = c,,x + D,,(O)U, Y=C2,x  + D2,(0)W 

dz/dt  = a,z + b,Y, U = c , z  (40) 
where 

A ,  = D,A(O), C11 = DxC,(0), Cx = D,C2(0) (41) 
a ,  = D,a(O), bo = b(O), cI = D,c(O). (42) 

For the linearized system (40) we denote the equations 
(261, (27) by M ( x )  = xTL,x and UYZ(x) = xTL,x. (See 
e.g., (4.31, (4.4) of [311.) 

Corollary 4.6: Each of the statements below implies the 
statement which follows it. 

a) There exists a neighborhood of the origin IR ~2 
X 2, a function E with strictly positive Hessian satisfying 
assumptions Al)-A4), and functions a(z), b(z) ,  c ( z )  solv- 
ing the regional E-DZSFBK problem for the closed-loop 
system (1)-(5) in R. 

b) There exists a neighborhood of the origin in which 
M ( x )  I 0, UYZ(x) I 0 have solutions X(x) ,  Y , ( x )  de- 
fined by (28) such that X , q ,  and y I  - X are locally 
gradients of positive functions with strictly positive Hes- 
sians. 

c)  The DGKF Riccati's L ,  5 0 and L ,  I 0 have 
solutions X, > 0, YI1 > 0 with Y,, - X ,  > 0. 

d) There exists a positive definite quadratic function 
qin satisfymg assumptions Al)-A4) and matrices a, ,  bo, c1 
solving E-DISFBK for the linearized closed-loop system 
(40). 

In addition c) - d). Moreover, if a) is satisfied, then a 
compensator satisfying d) is given by the linearizations 
(42) of the compensator satisfying a). 

The corollary was stated in terms of inequalities, e.g., 
L,  5 0, while equalities L,  = 0 are more common in the 
literature. For the linear case if a positive definite solution 
X to a Riccati such as L,  I O_ exists, then there is a 
positive semidefinite solution X to L,  = 0. This is a 
phenomenon (which implicitly includes differentiability) 
not yet demonstrated in the nonlinear case. Using this the 
interested reader could produce an equality version of the 
linear statements. 

An identical argument to the separation principle (The- 
orem 4.4) also shows that if L,  = 0, then a, and c1 are 
given by the linearized versions of (29) and (34). (See also 

constructed 
from (40) over q = (ql - X,)Tbo gives the same answer 
as linearizing the expression k(x ,  z )  in (37). The minimiz- 

t151.) 
Similarly, minimizing the linearized H* 
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ing bo above can be solved for in the case that Y,, - X, 
> 0 to obtain 

a constant. With this choice of bo,6 = 0 in (38) so that 
the minimum k(x, z) is attained. For the linearization 
(and linear systems in general), k(x, z) has the particu- 
larly useful form 

from which the conditions L ,  I 0, L ,  - L, I 0, and 
(through a congruence transformation) L,  5 0 may be 
read off. Note that this reflects the value of the Hamilto- 
nian upon replacement of a, b, and c according to the 
linear versions of (34), (431, and (291, respectively. 

V. ENERGY ANSATZES 
To make further progress we make assumptions on the 

storage functions which we permit. It is a valid question to 
ask whether we can we find feedback f , g  to make the 
system €-dissipative where E is restricted in some way. Of 
course we hope the restriction not only makes computa- 
tion possible but that optimal or near optimal storage 
functions have this form. In order of liberality, natural 
conditions are as follows: 

C1) E ( X ,  2 )  = q , ( x )  + q 2 ( x  -2).  
C2) E h ,  2 )  = q , ( x )  + q 2 ( x  - 2 )  + E,, 2y(z )q , (x  -2). 

C3) E ( X ,  z )  = qJx) + q 2 ( x  - z) + r (x ,  z j  where r is a 
smooth nonnegative function such that r vanishes on 
z = 0 and on the diagonal x = z and V&, x) = 0. 

C4) E h ,  2) = ql(x) + q 2 ( x  - 2 )  + E,, 2y,(x,  z)q,(x -2). 
C5) E ( X ,  z )  = q , ( x )  + q 2 ( x  - z) + r ( x ,  z) where r is a 

smooth nonnegative function such that r and V r  vanish 
on the diagonal x = z. 

In all cases, we shall assume that each function qk, yk  
is nonnegative, smooth, and vanishing at 0. The motiva- 
tion for these conditions is primarily mathematical, in that 
linear systems produce E of the form Cl), and without the 
weakest assumption C5) the mathematical problem is 
vastly more complicated than with it. The following 
proposition describes the relationships between these "en- 
ergy ansatzes". 

Proposition 5.1: An energy function satisfying condition 
(5.m) also satisfies condition (5.n) if m < n < 3 or m = 

4,n  = 5. 
Note that the hypotheses 4) and 5 )  of the Separation 

Principle (Section VII) are implied by C3). 
Ansatzes on E convert directly to conditions on gradi- 

ents which come from differentiating E .  For example, in 
Cl) we recover q1 and q2 from ql(x) = E ( x , x ) ,  and 

~ ~ ( 2 )  = ~ ( 0 ,  -2). Thus, 
V , € ( X ,  2 )  = ( V ; E ( X ,  x) + V , E ( X  - z ,O))  

- V , E ( X  - 2 ,  x - 2) 
V , E ( X , Z )  = - V , E ( X  - z,O) + V , E ( X  - z ,x  - 2). (44) 

By assuming an ansatz for E ,  we get necessary condi- 
tions for the solution of the H" problem which do not 
involve the unknown function E ,  but rather only solutions 
of certain Hamilton-Jacobi inequalities. 

Theorem 5.2: If (E-DZSFBK) has a strictly positive solu- 
tion E for the closed-loop IA system, where E is 

a) of the form C3), then there exist solutions X(x> 
and Y , ( x )  of M ( x )  I 0 and IAyT(x)  I 0 [see (26) and 
(27)] such that X(x), &(XI, and Y,(x) - X(x) are gradi- 
ents of positive functions. 

b) of the form C1) then for all x, z 

0 2 2(X(X - z ) ' [ B , ( z ) B , ( z ) ~  + B,(x)B,(z) '  

- B 2 ( Z P 2 ( Z ) ' ]  + Y,(x - Z I T [  -B, (z )B, (z ) '  

-B , (x )B , ( z ) '  + B2(ZP?(Z)']) X(Z> 

+ 2[ -X(x-z)TB,(X)B,(X)T 

-X( 2) 'B2( z> B2( x) ' 
+Y,(x - Z ) ' B , ( X ) B , ( X ) '  +A(x) ' ]X(x)  

+ 2[A(x)' -A(z)']Y,(x - 2 )  

+2[ - Y , ( x  - Z)'B,(X)B,(X)' - A ( X f  

+A( z ) ' ]  X (  x - 2 )  + Cl( X)'C,( x) 

- C,(X)'C,(X> + CZ(X)'C2(Z) 

+ C,(Z>'C,(X) - C,(Z)'C2(Z> 

+ X W ' B d  x ) B , (  X ) ' X ( X >  

+ X ( x  - z)TBl(x)Bl(x)TX(x - 2 )  

+ X( 2) 9 2 (  2) B2( Z)'X( 2) 

+ Y , ( x  - Z ) T B l ( X ) B I ( X ) ' Y , ( X  - 2 )  

provided the DGKF simplifying assumptions (21) hold. 

except 
outside of some neighborhood of the origin. We have 

Proofi i) Note that Theorem 4.2 guarantees all of this 
- X being the gradient of a positive function 

X(x)  = + V , € ( X , X )  = +vql(x) 
Y , ( x )  = + V , E ( X , O )  = 3 V q , ( x )  + 3Vq2(x). 

Here, V,r(x ,  x) = 0 follows from Vzr (x ,  x) = 0 and 
r ( x ,  x) = 0. Similarly, r (x ,  0) E 0 implies that V,r(x ,  0) = 

0. Then Y , ( x )  - X(x) = (1/2)Vq2(x) and the theorem 
follows, since ql, q2, and q, + 77, are positive. ii) The 
expression in b) is just the condition k 5 0 in Theorem 
4.5 with expressions (44) substituted in for the respective 
gradients of E ,  where the DGKF simplifying assumptions 

To this point our results have been in the direction of 
necessary conditions for a solution. We now suggest some 

were used to simplify some expressions. 
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constructions to the reader for producing solutions. They 
probably are not optimal at all, since there is a consider- 
able gap between our necessary and our sufficient condi- 
tions. The main weakness in our understanding lies with 
b(z),  so the recipe below just picks it in one sensible way. 
Often there will be better ways. The solutions given by the 
recipe in the linear case is the maximum entropy solution. 

RECIPE 

M ( x )  is given by (26). 
1) Find a solution X(x) to M ( x )  I 0, where 

2) Choose c*(z) and u*(z)  as in (29) and (341, that is 

a*( 2) = A( 2 )  + B2( z)c*  ( 2 )  - b( Z)C,( 2 )  

+ ( B , ( z )  - b(z )D , , ( z ) )B , ( z ) 'X ( z ) .  

3) For a suitable energy function, define b ( z )  by 

b( z)' = - 2( 0, v, E (  x, z)lx=z> -l 

-Dz,(z)BT(z)X(z) + C,(X)  - C,(z)]) l x=z .  

Here we assume that 0, V,E(X, z)(,=, is invertible so 
that we can solve for b(z).  

Remark I :  Motivation for the formulas in the RECIPE 
for U* and c* arises as follows. First of all, in the linear 
case, the maximum entropy or central solution arises via 
the recipe with M ( x )  = 0, LAYI(x) = 0 and with E of 
the form Cl)  with 

r l l ( X )  = X T X ( X ) ,  T A X )  = ~ ' ( Y r ( X )  - X ( X ) )  

where X ( x )  and &(XI are linear. For the general nonlin- 
ear case, if E has the form C3) with X ( x )  = (1/2)Vx E(X, x) 
and q ( x )  = (1/2)V, E ( X ,  0) and if M Y ( x )  = 0, then the 
form of U* and c* is forced on us by the Separation 
Principle, so it is natural to look for solutions of this form 
even if we only have M ( x )  I 0. 

Remark 2: We would like to choose b(z )  so that the 
gissipaLion inequality H$'Y,), b(z ) ,  c*( r )  I 0, i.e., [from (3811 
be,(x)bT + k(x ,  z )  5 0 holds in as large a*neighborhood 
of (0,O) E 2YX 2 as possible. Note that b vanishes for 
x = z. Hence, given that the necessary condition k(x ,  z )  
I 0 holds for all x, z, H*W I 0 is automatic for any 
choice of b(z )  on the diagonal z =,x. We would like to 
choose b(z )  in such a way to make b = 0 at all x and Z ;  

in the linear case indeed this is p2ssible. However, in the 
general nonlinear case obtaining b = 0 is only possible if 
one allows b to depend on both x and z ;  unfortunately, 
we are allowed only to let b be a function of z,The idea 
then is, for each fixed z ,  to choose b ( z )  so that b vanishes 
to maximum possible order (order two) at x = z as a 
function of x. In this way, we expect H*W s 0 to remain 
true on a large neighborhood surrounding the origin. This 
leads directly to the formula for b(z )  in Step 3) which we 

obtain by differentiating 6' in (39) with respect to x and 
evaluating at x = z. 

Remark 3: The inequality M ( x )  I 0 and related 
equation M ( x )  = 0 are nonlinear generalizations of 
Riccati equations well known in classical mechanics as 
Hamilton-Jacobi equations (or inequalities). They also 
appear in various forms in nonlinear optimal control and 
game theory. There are a number of methods of solution; 
for a discussion, especially the connection between solu- 
tions of Hamilton-Jacobi equations and Lagrangian in- 
variant manifolds of Hamiltonian vector fields, see [331. 

Next, we give sufficient conditions for the compensator 
constructed via our RECIPE to solve E-DISFBK and to 
obtain asymptotic stability in the H"-problem. 

Theorem 5.3: Let E be as in C3), a*(z), b(z),  c*(z> as 
in the RECIPE, X ( x )  = (1/2)V,~(x, x ) ,  and Y , ( x )  = 
(1/2)V, E(X, 0). Define Odiss = {(x, z): x, z in state space 
satisfying (38) I 0). Assume that X ( x )  and Y , ( x )  satisfy 
the Hamiltonian-Jacobi inequalities M ( x )  I 0 and 
LAYI(x) I 0 [see (26) and (2711 such that each of X(x), 
&(x), and Y , ( x )  - X ( x )  is the gradient of a nonnegative 
function. 

a) Assume in addition that M ( x )  < 0 for all x. Then 
the RECIPE produces a solution to the region ( E -  

DISFBK) problem on the set adisS. 
b) Assume there exists p > 0 so that Pp = ((x, z )  E 2 

1) Then if ( x ( t ) ,  2 0 ) )  is a trajectory of the closed- 
loop system subject to zero input signal W(t)  = 0 
for t 2 0, then ( A t ) ,  z ( t ) )  E Pp whenever 

x z E ( X ,  2) I p }  c adisS. 

( d o ) ,  d o ) )  E 3. 
2) Assume in addition: 

i) The DGKF simplifying assumptions D,, 
d(x)'C,(x) = 0 and B,(x)D,,(x>' = 0. 

ii) (C, ,  A )  is detectable, i.e., i ( t )  = A(x(t))  and 
C, (x ( t ) )  = 0 for all t 2 0 implies x ( t )  -+ 0 at 

iii) The system i = A ( z )  + B,(z)B,(z>'X(z> - 

iv) E is proper and strictly positive. 

t -+ W. 

b(z)C,(z) is asymptotically stable. 

Then whenever (x ( t ) , z ( t ) )  is a trajectory of the closed- 
loop system subject to zero input signal W(t> = 0 and 
(do), ~ ( 0 ) )  EY~, then (n(t) ,  d t ) )  -+ 0 as t -+ m. 

Pro08 a) adiss contains an open set around the di- 
agonal x = z ,  since k ( x ,  x) = M ( x )  < 0. Since X(x) = 

(1/2)V&x), and Y , ( x )  - X(x) = (1/2)V17,(x) are the 
gradients of strictly positive functions, r), and 77, are 
positive. By assumption, r has nonnegative values. Hence, 
E ( X ,  z) is strictly positive and the regional ( E  - DISFBK) 
problem is satisfied on the region (adiss). b) This is 
similar to [29, theorem 3.11, and one should see that paper 
for a proof which converts easily to this situation. The use 
of detectability predates this and is in [121, [321, [331. 

Remark 4: In Theorem 5.3-b) we need assume that the 
detectability assumption ii) and the asymptotic stability 
assumption iii) hold only regionally, i.e., only for the case 
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where M O ) ,  ~(0))  ~ 9 ~ .  Also, no particular form for b(z )  
was required. 

Remark 5: An analog of Theorem 5.3 holds if one 
replaces the compensator a*(z ) ,  b(z),  c*(z> in the 
RECIPE by the linear compensator which solves the 
H"-problem for the linearization of the plant ( F ,  G,, G , )  
at the origin. The article [291 mentions this as does [33]. 
We expect but do not know how to prove that the region 
(n,,,,) for the compensator (u*(z), b(z),  c*(z)) in the 
RECIPE is usually much larger than the corresponding 
region associated with the linear compensator which solves 
the linearized problem. 

VI. W-INPUT &FINE SYSTEMS 

We often consider a special class of systems (7) called 
WIA systems. These are affine in W but not necessarily in 
U. We make the same assumptions as for IA systems in 
this more general case with the additional assumption A3) 
to simplify notation. In fact, many of the results are 
identical in form, but the resulting equations are not as 
explicit as for the IA case. Expressions for W * and H*w 
for WIA systems were given by (19) and (20) respectively. 
We have the following analog of IA theorems. 

Lemma 6.1: Fix x, z and assume 

c * ( x )  = argmin, H O * , ~ J X ,  x) 

exists. Then 

a ,  b ,  c 
inf ffa*,:,(X, 2) 

= {$,,..= n7L4x(x), :ir], z # 0 (45) 

i;fH:r,(x, z )  = minH$r,(x,  z )  = W D ~ Y ~ ( X ) ,  

Here, we define 

b 

z = 0. (46) 

m ( x )  = IIC,(X, c*(z))Il2 + X ( x ) T B , ( x ) B , ( x ) T X ( x )  

+ X ( + l B ( x , c * ( x ) )  

+ A B ( x , c * ( X ) y X ( X )  
and 

U.ZAYZ~ = [ A B ( ~ , o ) '  - ~ ~ ( x ) e , ( x ) - ' ~ , ~ ( ~ ) ~ ~ ( x ) ~ ]  

. + W)' 

+ IIc,(x,0)I12 - ~,(x)~e,(x)-'~,(x> 

* [  AB(x,O) - Bl(x)D21(x)Te2(x)-1c2(x)] 

+ Y,(.)'[ Bl(x)Bl(x)T 

-B,(x)D21( X)Te2(X) - D21(x)B1(x)T] Y , ( x )  
where X(x) and Y , ( x )  were defined by (28) with q ( x )  = x. 

The minimizing c when x = z is defined implicitly by 

2C,(z ,c*(z))TD,C,(Z,C*(Z))  

+ v,E(Z,Z)TD"AB(Z,C*(Z)) = 0. (47) 

The minimizing b when z = 0 is the same as for IA 
systems and is given by (30). 

Theorem 6.2: The obvious analog of Theorem 4.2. 
Theorem 6.3: Separation Principle for WH Systems. As- 

sume that an energy function E ( X ,  2) satisfies the assump- 
tions Al)-A4) and also W U X ( x )  = 0 for all x (where it is 
assumed that the critical c* exists for each z). Then c(z) 
is given by the solution c*(z) to (47) and a ( z )  is given by 

Prooj? Parallels the proof of Lemma 4.1. 

U* ( 2 )  = F(  2 ,  w* ( 2 ,  2 ,  b( z ) ) ,  c* ( 2 ) )  

=AB(z,c"(z)) - b(z )C , ( z )  
+ b ( z ) [ - G , ( z , W * ( z ,  2, b(Z)))I  

+ ( B , ( z )  - b(Z)DZl(Z))Bl( 21% 2 )  * (48) 
Prooj? Identical to Theorem 4.4. 

Theorem 6.4: Under the hypotheses of Theorem 6.3 a 
necessary condition for the system a*(z), b(z),  c*(z) with 
a*, c* given by Theorem 6.3 to solve E-DISFBK is k(x ,  z )  
I 0 for all x, z where k is 

k ( x , z )  : = A B ( x , ~ * ( z ) ) ~ V , € ( x , z )  

+ A B ( z ,  c*(  2))' V Z E ( X ,  2 )  + IIC,(x, c*(z))TI12 

- [C,(X) - C, (Z>  + 921(x)B,(x)'  VXE(X7 2) 

-D21( 2 )  Bl( Z>'X( 41 
. [ C 2 ( 4  - C , ( Z )  + ;D21(X)B1(X)T VXE(X3 2) 

-D21( 2 )  Bl( 21% 211 
+ a  VXE( x, Z ) * B l ( X > B l (  X y  V,E( x, 2 )  

+ V,e(x, z ) 'B l (Z )B , (Z )TX(z )  

x) - 

which is independent of b. 
Prooj? The proof is identical to Theorem 4.5, except 

that there is no explicit form given for c*Jz), and u*(z )  is 
now given by (48). The expression for b is the same as 

VII. SEPARATION PRINCIPLE 
This section runs at at a higher level of generality than 

the previous sections; specifically, in this section we do 
not assume that our systems are affine in the inputs. 
Consider the general feedback system (1) and (2) defined 
in the introduction with G, independent of W and G, 
independent of U. We want to find a feedback system 
i = f ( z ,  Y), U = g(z) which makes the closed-loop system 
dissipative. Fix a candidate smooth storage function E ( X , Z )  
and define 

given by (39) in the proof of Theorem 4.5. 

h f , . ( W , x , z )  = V,E(X,Z)  * F ( x , W , U )  + v z ~ ( x , z )  

* f ( z , G 2 ( x , W ) )  + IIGl(x, u)I12 - IIWI12. 

Note that here f is a function while U is a variable so 
that, for example, hf,g(L)(W, x, z )  = q, , (W,  x, z ) ,  which 
for IA systems is Hac,,, b(z) ,  c(zX ,(W, x, 2 ) .  
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Theorem 7.1: Separation Principle. Assume W = 

WLu(x7 z )  solves 

0 = D,h, ,u(W,  x, 2 ) .  

h ; , W , z )  = h f , L I ( W * ( X , Z ) , X , Z ) .  

We will abbreviate Wzu(x, z> to W * ( x ,  z). Define 

Assume there exists a function f * ( z , Y )  and a twice 
continuously differentiable energy function E ( X ,  z )  such 
that 

1) 

2) 

3) 

4) 
5 )  

h;Tg*(,)(x,  x> = min, h;,"(,(x, x) has a differen- 
tiable solution g*. 
DZh;Wu(x, z)I,=, = 0.  

The function pair (f * , g* )  satisfies h;lTg*&, z )  
I 0 for all x, z.  
V , E ( X ,  z)l,=, = 0 as usual. 
D,<V, E ( X ,  z>)l.=, has full rank. 

u = g * ( x )  

If the feedback U is given by g*(z), then f *  has the 
form 

f * ( z 7 Y )  = F ( z , W * ( z , z ) , g * ( z ) )  
+ ~ ( Z , Y - G ~ ( Z , W * ( Z , ~ ) ) )  (49) 

for some function b(z,  Y )  satisfying b(z ,  0) = 0. 
Corollary 7.2: A condition which guarantees Theorem 

7.1-2) when the other conditions are met is h;Tg*(,)(z, z )  
= 0 for all z. For IA systems this is equivalent to M ( x >  
= 0 for all x. 

Remark I :  Theorem 7.1 can be interpreted as a nonlin- 
ear extension of the so-called separation principle for the 
central solution of the linear H"-control problem (see [15] 
and [31]). In this context, the separation principle amounts 
to the interpretation of the formula for the compensator 
(f * , g* )  as follows. If we assume that g* is independent 
of Y ,  the state feedback map g* is simply the solution of 
the state-feedback problem under the assumption that the 
compensator state z is the same as the plant state x. The 
first term in the compensator dynamics f*  is the same as 
the plant dynamics would be under the assumption that 
the compensator state z is the same as the plant state x 
and that the worst choice W*(z ,  z )  of W is fed in as 
input. The b function term in f *  is used to make adjust- 
ments for the fact that z # x. In the linear case, the 
dynamics f*  is the solution of the observer-based state 
estimation problem with the appropriate choice of b; in 
the nonlinear case unlike the state feedback problem this 
latter problem has no simple solution. In this way, we see 
the output feedback problem as reducing to the solution 
of two separate less complicated problems, the state feed- 
back problem and the state estimation problem. A prob- 
lem having some elements in common with the H"-prob- 
lem is the so-called output regulation problem, where one 
seeks a feedback which guarantees that an error signal 
asymptotically approaches zero in the presence of a dis- 
turbance but where there is no quantitative measure of 
performance. A principle for this problem analogous to 

the separation principle for the LQG and H"-problem, 
called the intemal modelprinciple, has been extended to a 
nonlinear setting in [30]. 

Remark 2: There are other interpretations of the sepa- 
ration principle which lead to different formulas even in 
the linear case. One was mentioned earlier and it yields 
the maximum entropy solution. It takes M ( x )  = 0 which 
makes the D, = 0 condition 2) correspond to x = z being 
a maximum of H,*(:, b(z) ,  c*cz) (x ,  2) .  However, it is intrigu- 
ing to pursue the strategy of taking z = x to be a mini- 
mum. That is, instead of picking E to make LAX as big as 
possible (least dissipative) subject to the constraint 
M ( x )  I 0, ick L4X to be very small. The objective is 
to make H* 'very negative on the diagonal t = x, indeed 
to make it a minimum there. Thus, 0, = 0 there so 
condition 2) holds; this intuition forces the formula (49) 
for f* to hold. 

Proof of Theorem 7.1: By 1) we have 

a) ~ , h ; W ~ ( x ,  z)(;==xgX(,) = O. 

By the chain rule 

DZ{h;Tg(Z)(x7 '1) = Duh;wu(x, Z)Iu=g(z)DZg(Z) 

+ Dzh;Tu(x7 z)Iu=g(z). 

Letting z = x  and g(z) =g*(z), by a) combined with 2) 
we have 

b) DZ{h7Tg*(,)(x,  z))  = 0. 

Define P(x, z> = F ( x ,  W*(x,  z ) ,  g*(z)) - f * ( z ,  G,(x, 

Lemma 7.3; f*  has the form claimed in the separation 

Proofi Set b(z,  Y )  = f*(z, B + GJZ, w*(z,  2) ) )  - 

W*(x ,  2 ) ) ) .  

principle iff F(z, z )  =*O. 

F(z, W*(z,  z) ,  g*(z)). Then we recover f*  as 

f * ( z , Y )  = F ( z , W * ( t , z ) , g * ( Z ) )  
+ b( 2 ,  Y - G2( 2 ,  W* ( 2 7 2 ) ) )  

and b(z ,  0) = 0 is equivalent to $(z,  z )  = 0. 

D,{VZ E (  x, 2 )  * F( x, Z)}l,=, = 0. 

D,{V,€(X,  2 )  - F ^ ( x ,  z)}I,=, = P ( X ,  X ) T D Z ( v z E ( X ,  z)) lz=,  

+ V , € ( X ,  x) a,&, Z)Iz=,. 

Lemma 7.4: F(z,  z )  = 0 is equivalent to 

( 50) 

Proofi 

Assumption 4) gives the last term is 0, and then assump- 
tion 5) provides the equivalence. 

Conclusion of Proofi From b) we have 

Dz{ V , € ( X ,  2 )  * F(x, W* ( x ,  z )  9 8* ( 2 ) )  

+V=:E(X,  z )  *f*( 2 ,  G2( X, W * ( X ,  2 ) ) )  

+IIG,( x, g* ( z))I12 - IIW* ( X, z)II'}Iz=, = 0 
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while (50) is equivalent to 

D Z I V , E ( X ,  2) . [W, W * ( x ,  z ) ,  g * ( z ) )  

-f*(z,GZ(x,W*(x, z ) ) ) I } I z = x  = 0- 

When these expressions are added, the terms involving f*  
cancel and we are left with 

D , { ( V , E ( X , Z )  + V,r(x,z)) .F(x, W * ( x , z ) , g * ( z ) )  

+IIG,(x,g*(z))112 - IIW*(x, ~)I12}Iz=1 = 0. (51) 

Hence, by Lemma 7.4, the Separation Principle follows 
once we show (51). By the product rule, the left-hand side 
of (51) is equal to 

F(x, W*(x, x), g * ( x ) ) T D , { V x E ( x ,  z )  + V Z 4 X ,  z ) ) l z = x  

+ I V . € ( X ,  x)  + V,E(X,  x)) 

* D , { F ( x , W * ( x ,  z),g*(z)))lz=x 

+ D,{lIG,(x, g*(z))I12)Iz=x - D,{IIW*(x, Z)II~}I,=~. 
Since E is twice continuously differentiable, Dz{Vx E(X, z )  
+ V,E(X, z>>l,=, = [ID, + D,)V,E(X, z)lZ=xlT = 0. Since 
the function V,E(X, z )  is identically zero on the set z = x 
[assumption 41, the first term above vanishes. 

Again using assumption 4), the remaining terms are: 

The first term vanishes by the defining equation for 
W* . The second term vanishes by the defining property 1) 
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