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In this paper we establish some facts about the dependence of scattering 
data for a perturbed wave equation on the perturbation. The results we 
derive hold for both acoustic and SchrBdinger wave equations, but we begin 
by describing them in the acoustic case. Hence we consider a perturbation 
of the acoustic wave equation in R”, 

Utt = Lu E a(x) v . A(x) vu - b(x)u, x E D, (I-1) 

where D is the exterior of a smooth bounded obstacle in R” and u(x, t) = 0 
for x E a D. All coefficients are smooth and nonnegative (A(x) is a positive 
definite matrix) and we assume Lu = du for 1 x 1 > R. The scattering 
matrix, which describes how much this equation deviates from utt = Au, 
is an operator valued function S(z) defined and meromorphic on the complex 
plane. S(z) is a unitary operator when z is a real number and it differs from the 
identity by a trace class operator when z is not a pole. Thus for x real, S(z) 
has pure point spectrum and each of its eigenvalues has modulus 1. In 
scattering theory of spherically symmetric potentials the arguments of these 
eigenvalues are called phase shifts. We shall adopt this terminology for the 
case at hand. 

In what follows we assume we have a family of equations of the form (I.l), 
in which the coefficients and the domain D depend smoothly on a parameter s. 
Our basic result is that phase shifts depend monotonically on D and the 
coefficients in the following sense. 

* The authors wish to thank the National Science Foundation for partial support 
of this work. 
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THEOREM 1. Gioen z > 0, let e ifl(s) be a simple eigenvalue of S(x, s), not 
equal to 1. If au/as, aA/& and a/&(6/ a are nonnegative on D and the normal ) 
variation of aD with s is nonnegative, then $/as 3 0. 

Actually, Theorem 1 holds whenever eza and its eigenvector are 
differentiable functions of s. When the coefficients and domain depend 
smoothly on s, the hypothesis that e*s is simple and not equal to 1 is sufficient 
to ensure this, since S(z, s) is a smooth function of s and 1 is the only possible 
accumulation point of its spectrum. If the dependence on s is analytic, one 
only need assume eia # 1. This is discussed in Section 1. Note also that /3 
is only defined up to an additive integer multiple of 27r. However, this ambi- 
guity obviously has no effect on the theorem. 

For z > 0 the phase shifts can be chosen to be analytic functions of z, 
except possibly at points where they are congruent to 0 mod 2n. Thus we can 
differentiate the phase shift with respect to the frequency x, and in a natural 
way (see Section 2) Theorem 1 leads to 

THEOREM 2. If D is starlike with respect to the origin and the radial deri- 
vative of each coejicient a, A, and b/a is nonpositive, then the derivative of any 
phase shift with respect to x will be nonnegative for z > 0. 

Theorems 1 and 2 hold without modification for the Heisenberg scattering 
matrix for the Schrodinger equation 

iut = a(x) 0 * A(x) Vu - b(x)u, x E D C R2+l, 

with u(x, t) = 0 on 8 D, since it is just S(Z~/~), where S(x) is the scattering 
matrix of (1.1). (cf. [S p. 2201). 

A “distorted wave” formula for the derivative of S(z) with respect to s 
plays a key role in the proof of Theorem 1. A loose analog of this formula is 
used by engineers for several purposes. In fact, there is a much larger literature 
on scattering matrix variations in engineering than in physics or mathematics, 
and this topic seems to be of engineering importance. Section 3 discusses an 
engineering view of this subject and gives a systems theory derivation of a 
one-dimensional distorted wave formula. 

There is a close connection between the results here and work initiated 
by Lax and Phillips on the purely imaginary poles of the analytic continuation 
of S(z). The comparison theorems on the positions of the purely imaginary 
poles in [l, 6, 131, and the variational results on phase shifts given here are all 
consequences of the monotone dependence of the “transmission coefficient” 
on perturbations of the coefficients a, A, and b and the region D, (see (1.5)). 
In a sense we have just brought the pole theorems down to the real axis. 
However, the phase shift results hold in cases where there are no purely 
imaginary poles (i.e., when n is even) and do not require hypotheses beyond 
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the positivity of the variations in the coefficients and the domain. On the 
other hand this approach does not seem to yield any results for the Neumann 
and Robin boundary conditions considered in [6] and [l], respectively. 

1. THE VARIATIONAL DERIVATIVE OF A PHASE SHIFT 

We shall study utt = Lu on the exterior D of a bounded region with L the 
differential operator (1.1). The domain of L is specified by taking the graph 
closure in L*(D) of L acting on smooth functions of bounded support which 
vanish on 8 D. The resulting operator will be self-adjoint with respect to the 
inner product 

(f9 da = jD (1/44>fiT & 

The scattering matrix arises in the following way. There are two natural 
families of generalized eigenfunctions of L-the “iz-incoming and iz-outgoing 
distorted plane waves.” These are parameterized by 9-l x lR1 and denoted 
by v-.(x, W, Z) and v+(x, w, z). The mappings 

extend to unitary maps of L2(D, l/u dx) onto L2(W, L2(S”-l)) such that 
F;lLFk is multiplication by z2. The scattering operator is defined as .9?+9z1 
and one shows it has the form 

FvTfk a) = w4.k .W), 
where S(Z) is a unitary operator on L2(Sn-l) and S(Z) is called the scattering 
matrix. This is not an especially illuminating way of introducing S(Z) but it 
does make one property we eventually need almost obvious: 

S(z) : v-(x, w9 4 -+ v+(x, w9 -4, XED. (1.1) 

To define the distorted plane waves more precisely, one proceeds as follows. 
For (T > 0 and 1 5 ) = 1, let u(x, 5, u) be the square integrable solution to 
(L - ~9) u = (L - u2) eos+ such that u - eOx’p vanishes on 8 D. The func- 
tions U(X, e, cr) have analytic continuations from the positive real axis to 
Re (I > 0, 0 # 0, as Sobolev space valued functions of (T, and are smooth on 
D x 29-l x (Re u 2 0, u # O)(f or a sketch of the proof of this see the 
Appendix). For Re u > 0, u # 0, we set ~(x, 5, u) = eoz.E - U(X, 5, u). 
Except for a multiplicative factor depending only on z the function 
~(x, -w, in) is the &outgoing distorted plane wave 9)+(x, w, z). The 
is-incoming wave q- is defined in an analogous way beginning with 
u < 0. 
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For z E {Im z < 0} u {z > 0) the scattering matrix can be written] 

S(z) = I + (-k/24(“-112’ qiz>, 

where X(U) is an integral operator on L2(S”-l) with kernel K(B, -w, u). 
K(B, w, u) is called the transmission coeficient associated with the scattering 
problem, and it satisfies 

u(x, 8, u) = 
p4xl 

j x lh-u/2 [ i k eq+) +o(&)] 

for Re 0 > 0, CT # 0, which can be taken as its definition. We shall use the 
transmission coefficient to study the scattering matrix. 

As in [6, p. 7441, we have for u > 0 

c,k(8, W, u) = lim 
s r-m IsI=r 

- P-J g (e) dS, (1.2) 

where u(e) = U(X, 0, U) and 

c, = lim 
s 4 +w . &) e-or~l-w~w’)rn-1/2 &,’ 

r-m p-1 

However, an application of Green’s formula shows that the function inside 
the limit in (1.2) is constant for 1 x j > R. Thus 

+(e, WY 4 = 1 we> 
ld=R 

ar dS. (1.3) 

By analytic continuation (1.3) holds for Re u 3 0, u # 0. 
Now we assume that D and the coefficients of L depend smoothly on a 

parameter s, where we set L(0) = L and D(0) = D. We want to differentiate 
(1.3) with respect to s. In the Appendix we sketch a proof that u(x, f, U, s) 
is a smooth function of (x, s) on D(s) x [--6, S] for any t E 9-r and 
u E Re u > 0, u # 0. Moreover, when n is odd, the functions U(X, 6, U) are 
smooth on D x P-l x {Re u >, 0), but for 1z = 1 bizarrely enough 
U(X, I, u, s) need not be differentiable at u = 0 (see the example in Sect. 4). 
Thus most of the theorems in the paper require u # 0 as a hypothesis. At 

r For a derivation of the formula see [7, Theorem 6.21. However, a few technical 
remarks are in order. Our definition of k(B, W, U) is consistent with the notation of 
[6, 131. The function s- in [7] is related to k by s-(0, w, u) = k(w, 8, -iu) and one 
must use [S, relation (5.9), p. 1711 to arrive at (1.7) above. Theorem 6.2 of [7] disagrees 
with Theorem 5.4 of [5] by a sign, and the error seems to be in [5]. The remarks 
concluding Section 2 check the sign. 
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any rate for Re CT > 0, u # 0 we can differentiate (1.3) and evaluate at s = 0 
to obtain 

- ($(8),(L - a,P~~~) - (ey(L - o+!l)) - 
a 0 

aem 
+ LD if m xjy 

_ e”“w a au arlA -jj- (@ 6 ( 1 

where 7A = AT and 7 is the inner unit normal on 8 D. Thus 

c, ; = (g(e), (L - 2) *(w)), + (tv, g uqa 

where 

- ( p.9 ) s + 
n 8D 

(as above), 

~pav.~vj-a(~(+qj. 

Now an application of Green’s formula to the first term on the right yields 

$8 g = ((L - u”) g (O), 24(w)) 
a 

+ (c”y $ u(B)) 
a 

( 

aL 
- eor.w, X-e 

OX.8 
i s a + aD $(f? 2 @J> - & ($ (Q) (P(W) dS 

=--- ($- 44 4~))~ + ($ eOx+, ~(oJ,), + (P”.“, $ u(8)) 
a 

!!!fkd dS. 
a7.4 

Now, integrating by parts once in each volume integral, we get no new 
boundary terms because q(w) = ~(0) = 0 on a D, and arrive at the formula 
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To eliminate (au/&)(e) f rom the boundary integral, we choose a smooth 
function p(x, s) on aD x (-&a) such that 

x E aD o x + p(x, s) T(X) E 30(s). 

The existence of such a function may be taken as the definition of “D(s) 
depends smoothly on s.” Then we have 

u(x + p7], 8, u, s) = eo(z+p+@, XE~D, 

and, differentiating with respect to s, 

2 (x, e, u, 0) = gg. 

Since q(w) = 0 on aD, the vector VP, is parallel to 7 on aD. Thus 

(1.5) 

Substituting (1.5) and (1.6) into (1.4), we have the basic variational formula 

. AT dS. (1.7) 

This is the distorted wave formula, It is valid for Re (T < 0, (J # 0, 
and it shows (ak/as) is a smooth function of (0, W, U) on S-1 x 
P-l x {u : Re u < 0, u # O}. From here on we set 71 . Ar) dS = dS, . 
Finally we can use (1.7) and (1.2) to compute that the derivative of S(x) is 

g(z) = & (&)“-’ (s, vq(e> . g Vfp(-co) + v(e) ; (q) y(--w)dx 

+ s,, g (0) 2 g C-w) d&) (1.8) 

for Im z < 0, x # 0. When n is even, the analytic continuation of (1.7) to 
z < 0 differs from the scattering matrix by 21 (see [7, Theorem 6.41) but, 
since we are computing (dS/ds), this does not affect the computation. 

From this point on we will be concerned only with z > 0. When z is real, 
~(3, -0, iz) and ~(x, 0, iz) are the ix-incoming and iz-outcoming distorted 
plane waves for direction -0, respectively. Moreover, these waves are nor- 
malized so that S(z) maps ~(x, -0, iz) onto ~(x, 0, iz), when x > 0. This 



384 HELTON AND RALSTON 

follows immediately from [7, formula (6.12)] ‘f 1 one recalls that S-l(z) = S*(z) 
and k(0, W, u) is symmetric in (6, w). Thus the kernel of S(z)(dS*/ds(x) is 
given by 

for z > 0. 
Next assume that X(s) = ezsls) is an eigenvalue of S(z, s), x > 0, which is 

differentiable at s = 0, and that a normalized eigenfunction V(S) belonging 
to X(s) may also be chosen so that it is differentiable at s = 0. If A, a, b, and p 
are analytic in s near s = 0, then an argument like the one in the Appendix 
shows S(z, s) is a holomorphic function of s near s = 0. Since S(z, s) is 
unitary for s real and differs from the identity by a compact operator, standard 
results from analytic perturbation theory imply h(s) and z)(s) may be chosen 
differentiable at s = 0 if X(0) # 1, (see [4, the reduction on pp. 368-369, 
and Theorem 1.10, p. 711). Of course, differentiable choices of h(s) and V(S) 
are always possible if X(0) 1s simple and isolated. Letting ( , ) denote the inner 
product on L2(SQ-1), we have 

(z(s), S(z, 0) S*(z, s) u(s)) = ei6@)(u(s), S(z, 0) v(s)). 

Differentiating with respect to s and evaluating at s = 0 yields 

( @), S(% 0) Jg (z, 0) o(0)) = i g (0). 

Combining this with the formula for the kernel of S(z)(dS*/ds)(z), we arrive at 

$ (0) = -& ($)'-' (Jb Vf g qf + 1 f I2 (& ( -“l’ b )) dx 

where f (x) = Jsnel ~(0, 0) ~(x, 8, &r) de. This leads immediately to Theorem I. 

2. DEPENDENCE OF PHASE SHIFTS ON FREQUENCY 

One can use Eq. (1.8) for (dS/ds)(z) to compute the derivative of phase 
shifts with respect to z. This observation is the old one that changing 
the frequency of a distorted plane wave is equivalent to a radial expansion of 
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the spatial variable in the Hamiltonian. To be more precise define the 
operator 

L,u = a(h) v . A(h) vu - h%(Ax)u 

with Dirichlet boundary conditions on FD, , where x E D c- Xx ED, . 
When X = I this is just the operator L of the preceding section. One can 
easily check that if 91(x, 5, ) o is a distorted plane wave for L, then cp(xX, [, u) 
is a distorted plane wave, CJ+(X, 5, ho), for L, at frequency ha. It follows that 
the scattering matrix for L at frequency U/X equals the scattering matrix for 
L, at frequency u. Thus, the preceding work may be used to compute the 
behavior of the scattering matrix with change in frequency. Suppose eis(z) is a 
differentiable eigenvalue of S(z) with a differentiable eigenvector. Note, that 
since S(z) is analytic in z for z > 0, the remarks following (1.9) apply here. 
Then, applying (1.10) to L, yields 

(2.1) 

which implies Theorem II. 
There is a distant connection between the results of this section and the 

question of when S(z) has poles converging to the real axis. We mention it 
here mainly because it indicates that the (elusive) sign of dj?/ds in (2.1) is 
correct. When n is odd, A, = b = 0, and a(x) is a function of / x / alone, one 
can show that each eigenvalue of S(z) is a Blaschke product multiplied by 
e*pz where ) p j is uniformly bounded for all eigenvalues. This shows that if 
each phase shift is monotonic increasing, the scattering matrix cannot have 
poles arbitrarily close to the real axis. Hence we conclude if a,. ,< 0 then the 
scattering matrix does not have poles arbitrarily close to the real axis. Actually 
for this case it is known that there is a pole-free band about the real axis 
essentially if and only if U(Y)/ Y is monotonic decreasing as Y goes from zero 
to co (see [12]). W e conclude that at least one of the signs in (2.1) is correct. 

3. AN ENGINEERING VIEWPOINT 

In network design and more generally in engineering “systems” design one 
usually associates with a given device a matrix or operator valued function 
called its frequency response matrix. The frequency response function is 
analogous to the scattering matrix and the two are in fact the same in some 
circumstances. There is a large engineering literature on variation of the 
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frequency response function with systems parameters. The book [2] is a 
compendium of articles on the control theoretic aspects of the subject. The 
authors are more familiar with the network design approach to the topic and 
this is surveyed (as of 1971) in [I 11. A popular technique for analyzing 
dependence of circuit response on variations of circuit elements is called the 
adjoint method. It was introduced in 1969 by Director and Rohrer. 

We now describe the foundation of the adjoint method. A time invariant 
linear system consists of four linear operators A, B, C, D which in conven- 
tional engineering uses act on finite-dimensional spaces. The frequency 
response function for such a system is D + C(.Z - &l-l B = F(z). We assume 
A to be dissipative and so F is analytic in the right half-plane. Suppose the 
operator A depends on a parameter s while B, C, and D do not. Then by the 
second resolvent identity, 

z(z) = C(z - A(s))-'% (z - A(s))-l B. (3.1) 

In situations related to electrical networks the formula actually has an inter- 
pretation.2 Namely, to each network iV there is a network m (and a recipe for 
writing it down) with the same topology as N called the adjoint of N. Its 
basic property is that whereas the “state vector” w = (~1 - A)-l Bu gives 
the electric flow (current, and/or voltage, depending on how you set it up) 
through the various paths of N when ueZt is put into N, the vector zz = 
(Z - A*)-l C*u is the electric flow through n. Thus (3.1) says (u,(dF/ds)u) = 
(6, (dA/ds)w). Computer algorithms can be used to find w and B readily, and 
this approach is about the easiest to use numerically for finding the sensitivity 
of a circuit to variations in parameters of its components. 

Formula (3.1) has considerable relevance for the problem in this paper, as 
the following example shows. We shall work in R1 with a relative of the equa- 
tion u tt = Lu we have been studying. Here we investigate a first-order system 
and at the end of our calculations describe the connections with what we have 
already done. Consider 

a i 0 

atv’ la ( 1 

t ! c ax 

;: (;)=2l(;), 

which governs a transmission line (resistanceless) with capacitance c(x) and 
inductance Z(x) at the point x; and take c = I = 1 off of the interval [-1, 11. 
The energy of a vector (d) is 11(:)11; = Jzm cv2 + Zi2 dx. Now for x > 1, pairs 
(t) giving rise to functions moving in toward the perturbation have the form 

2 The authors are grateful to Professor Gabor Temes, E. E. Dept. U.C.L.A., for 
checking the correctness of our approach to the adjoint method. 



SCATTERING MATRIX 387 

(_‘,) (Y(X), while outgoing pairs look like (i) @). Precisely the reverse is true 
for x < -1. 

We shall associate a system [A, B, C, D] with this situation and do so in 
the spirit of the general procedure found in [14]. From this viewpoint one 
concentrates on the interval [- 1, 11; the operator A will act on it while B 
and C “communicate” . mformation from [- 1, l] to the remainder of the 
transmission line. Here D = 0. We define A to be ‘9I on [- 1, l] along with 
boundary conditions at - 1 and 1 which ensure that any electrical wave (3 in 
[ - 1, l] will, as time evolves, behave just as if the transmission line on [- 1, I] 
were embedded in the [-co, co] line as described above. This means that a 
wave that is outgoing near x = 1 actually “goes out at 1” and the boundary 
condition there imposes no additional constraint which reflects any part of the 
wave back toward 0; thus the boundary condition at x = 1 should be 
v(1) = i( 1). Likewise at x = -1 we require v(- 1) = A(-1). Hence 
we define L4 to be 2I acting on the domain B = {(,‘) supported on [- 1, 11: 
Ii W~)llt < 00, f(l) = g(l), and f(- 1) = -g(-1)). The operator B reads 
incoming data into the line. It maps C2 into 5, a space of distributions defined 
in [14], and is defined for (t) gC2 by 

B (;) = (11) WYX - 1) + (;)Ys(s + 1). 

C reads off outgoing data. It maps 9 into C2 and is defined by 

We have set things up so that the solution to 

(3.2) 

with boundary conditions (i) ~9 is precisely the state of the transmission 
line on [-1, I] when hit by incoming waves equaling (Ji)w(t) at x = 1 and 
(i) y(t) at x = - 1, respectively. Moreover, C(l) gives the values at 1 and - 1 
of the resulting outgoing waves. 

In [14], eAt is extended to a map from % to % and the solution to (3.2) is 
defined as 

The frequency response function can be defined and is in fact equal to the 
scattering matrix for this problem. 
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Now let us interpret Eq. (3.1) for the variation of the response function. 
(z - A)-l maps X into the space of data with finite energy and we define 

%( ,a,I)=(z-rJ)-lB(;), cpi( ,“‘-l)=(z-A)-lB(;). 

Similarly we define functions Q&Z, +l) in the space of data with finite energy 
bY 

%( , z, 1) = (x - w* c* (i), qo( , z, -1) = (z - A)-r* c* c;). 

One could alternatively regard the p’s as solutions to (s - a) ‘p = 0 satis- 
fying boundary conditions 

1 
Vi(l,% 1) = -l , ( ) 94-1, z, -1) = (:,, 

%U, x9 1) = (i), %(--1, x, -1) = (‘,). 

Since (z - A)-l B(,“) [resp., (.a - J-l* C*(,W)] is a linear combination of 
the q~ [resp., v,,], Eq. (3.1) says that for each z the 2 x 2 matrix (&J/A)(z) 
has entries (dF/ds)(z)(~, E’) with e = 51 and E’ = fl given by 

where qj = (qjl, vj2) for j = i or 0. Since each QI satisfies (x - au) g, = 0, we 
have --zlp$ = (a/&) pz2(x, a, e) and --.“c~~~ = (a/&) vE1 which can be 
substituted into our formula to give 

This is a distorted plane wave formula for the “lossless” transmission line. 
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Now let us compare this to the distorted wave formula (1.7) of Section 1, 
and check that the 9’s are in a reasonable sense distorted plane waves. The 
equation z/t = $!I$ is in fact a first-order system arising from the second-order 
equations utt = Lju, where 

L =Lca 
1 c ax 1 ax 

and L =!!?!a 2 1 ax c ax - 

Thus vt, and vi satisfy (z? - L,) # = 0 and (zz -L,) q? = 0. The boundary 
values of q0 satisfy 

and so at the point x = 1 the boundary values of v,d and (a/ax) qol equal the 
functions (ezz/ez) and (I /e”)(&:“/dx). C onsequently up to a multiplicative 
factor depending only on z the function y,, l is the outgoing distorted plane 
wave from Section 1. The other p’s can be treated similarly. Thus Eq. (3.2) 
derived here is the same as the distorted wave formula (1.7) for the differential 
operator L, (the z’s here differ from those in Section 2 by a factor of i). 

4. REMARKS 

1. Theorem I shows that for any perturbation satisfying 

(I) ?A/& 3 0, &r/as > 0, (a/&)(b/a) > 0, and a~/& > 0, 

one has 

(II) (Z$/as)(z, 0) >, 0 on R+ for any phase shift ,f? meeting the dif- 
ferentiability requirements. 

We call perturbations satisfying (I) “positive.” It is far from true that any 
perturbation for which (II) holds must be positive. As an example, consider 
the operator L(s) = (d2/dX2) - b( x, s on Ii1 with L(0) = (d2/dx2). In this ) 
case (1.9) shows the kernel of iS(z, O)(dS*/ds)(z, 0) is simply 

1 

22 
eizOx ab 

as e- 
ixor dx 

where 6 and w range over (1, -l}. Hence (II) holds if 

1 g (x, 0) dx 3 1 s f (x, 0) eiCX dx 1 5 > 0. 

This condition is clearly weaker than (I). 
We have not been able to find a reasonable strengthening of (II) that 

implies (I) or even anything much in that direction. Such a strengthening 

505/21/z-II 
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would be useful in inverse scattering problems. The only work in this 
direction that has come to our attention is the paper of Newton [lo], where the 
variation of a spherically symmetric potential with respect to phase shifts is 
computed. 

2. For n odd, we can look at the sum of all the phase shifts. To do 
this note that for n odd, (1.9) holds for z E R/O. Moreover, for 1z odd, S(x) 
is holomorphic in Im z < 0 and differs from the identity by a trace class 
operator. Hence, S(Z) has a determinant in the sense of [3]. Det S(Z) is a 
holomorphic scalar function in Im z < 0 which has modulus 1 on Im z = 0 
and may be extended to a meromorphic function in Im z > 0 by Schwartz 
reflection. Its poles are just the poles of the scattering matrix. For z real, 
log det S(x) is congruent mod 2& to 

where the phase shifts & are chosen so that -7r/2 < fllc < 7rj2 for all but 
finitely many k. Hence we call S(x) E (l/i) log det S(Z) the “total phase 
shift.” As we have seen, S(Z, s) is a smooth function of s for any smooth 
variation of (I.l), except possibly at z = 0. Moreover, (1.8) and Schwartz 
reflection show (&Y/&)(z) is a holomorphic trace class operator valued function 
away from the poles of S(Z). In [3, Chap. IV, Sect. 1 (1.14)], it is shown that 

f log det S(Z) = -tr (S(Z) z (4). P-1) 

Since the trace of an integral operator with kernel k(B, W) is lk(B, 0) de, 
combining (1.9) and (4.1) we have for real z 

Since both sides of (3.2) have analytic continuations to C - ({z: x or Z is a 
pole of S(Z)} u {0}), we have 

+ 6, g (x, 8, iz) $3 (x, 8,i~) dS,]]. 

This formula looks interesting, but we have not found a good use for it. 
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3. Given S(z, s) has a pole at z = h(s), one can begin with (1.7) and 
compute dh/ds. A computation of this type is given in [13, Proposition 4.11. 
However, in the odd-dimensional case, it is possible to compute dhjds without 
introducing the transmission coefficient at all. This approach was taken by 
J. La Vita in his New York University thesis (1969). 

Let B(s) be a one-parameter family of (unbounded) operators with common 
domain 9 for which B(s)4 is differentiable when 1c, ~9. Suppose that g* 
is a domain for B(s)* with the same property. Let h(s), #(s) be eigenvalues and 
eigenvectors for B, i.e., B(s) 4(s) = A(s) I/(S), which vary differentiably. We 
can take a very weak derivative of B(s) #(s) to obtain 

(B’(s) $(s>> P> + W(s), W*v) = WWh 9) + We ~1 

for a v in .%+*. If v is taken to be an eigenvector of B(s)* with eigenvalue 
x(s), then 

(4.3) 

From here on our proof requires familiarity with [8]. To a scattering 
problem with coefficients perturbed inside a ball of radius p, Lax and Phillips 
associate (see [8, Sect. 41) a maximal dissipative operator B defined on a Hilbert 
space K having eigenvalues precisely at the poles of the scattering matrix 
(under weak hypothesis; see [8, Theorem 5.51). To the h eigenvector b for B 
there corresponds an outgoing eigenvector f (in an extended space) for the 
perturbed Hamiltonian A with the property that its natural “projection” 
P+“f onto Ku equals b (see [8, Eq. (5.3)]). Under the assumptions of 
[7] the operator B* has a x eigenfunction bf and similar statements hold for g, 
the corresponding incoming A eigenfunction (extended space) for A*. From 
[8, Eq. (4.6)] one gets B(s) P+“f = P+“A(s) f and so 

W = (W b+N(P+aA’(s)f, &a (4.4) 

for the case where the Hamiltonian A(s) depends on a parameters. 
Everything so far was within the framework of abstract Lax-Phillips 

scattering theory. Concrete scattering theory uses Hamiltonians which are in 
fact differential operators. For such A(s) we have that A’(s) is for each s a 
differential operator with coefficients supported in the interior of the p-ball 
of R2+-l. It is easy to see from the definition of Ka that all functions supported 
in the p-ball are in Ka; consequently P+“A’(s) = A’(s) and we finally obtain 

1 
W = (b, b+) s ,r,<r, GWf, ~9, (4.5) 
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where ( , ) denotes the pointwise energy inner product appropriate to the 
problem. This formula describes how poles move when A is changed. 

In energy dissipative scattering, zeros as well as poles are possible in the 
Im z > 0 half-plane. By [S, Theorem 5.61 and its prelude, each such zero of 
s(x) occurs at an eigenvalue h of A. If 1 is an eigenvalue of A*, then (4.3) 
implies (4.5), where f, g are A, 1 eigenvectors for A, A*, and b, bf can be 
taken equal to f, g. Thus (4.5) also describes how zeroes move when 
A changes. 

APPENDIX 

Under our assumptions the functions u(x, 5, (T, s) are smooth functions of 
(x, 5, u, s) for Re 0 > 0, (J # 0. This is a standard result for Re u > 0, 
since then u can be represented as (L(s) - 02)-lg + h, where g and h are 
smooth and have bounded support in x. However, the following technique 
due to Lax and Phillips (employed in the proof of [7, Theorem 5.21 and by 
Majda, [9]) enables us to get a good representation for u when u is near 
Go , p. E NO. 

We begin by making a smooth s-dependent change of coordinates x = 
@(s, y) which is the identity for 1 y 1 > R and which maps D onto D(s). This 
transforms L(s) into another second-order elliptic operator M(s). Let ,9 be a 
smooth function such that p = 1 for j x / < R, 1 > /3 > 0 for R < / x 1 < 
2R, and /3 = 0 for 1 x 1 > 2R. Given g ELM such that g = 0 for 1 x / > R, 
and 0 near ip, , we will attempt to construct a solution to (n/r(s) - u”) u = g 
with u = 0 on aD of the form 

u = /3v + (1 - @w. (*I 

Here v is the solution to (M(s) - u2 + i)u = fwith z, = 0 on aD u 1 x / = 2R and 
f is a function supported in D n j x 1 < 2R, which is to be determined. Since 
M(s) has real spectrum, z, is well defined for a near ipo . w = G,, f, where, for 
Re u > 0, G, is the inverse of A - a2 acting in L2(Bn), and it is defined by 
analytic continuation in a neighborhood of Re u > 0, u # 0. G, can be given 
explicitly, but the only property we require is that G, is a holomorphic 
function of u whose values are bounded operators from {f e IP(UP) : f = 0 
for 1 x 1 > 2R) to Hm+2(lFJ?). 

Given u in the form (*), the equation (M(s) - u2) u = g becomes 

g = f + [(M(s) - u2)(Pu + (1 - B>w) -fl =f + T(s, 4f. 

T(s, u) f is a sum of first-order differential operators applied to e and w. 
Hence by standard elliptic theory T(s, u) is a bounded operator from 
{f E H”(D) : f = 0 1 x 1 > 2R) to IP+l(D n / x 1 < 2R), when u is near 
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in,, . Moreover, fasy arguments also show T(s, u) is a smooth function of 
(s, u) and all of its derivatives with respect to s are holomorphic in u. Since 
T(s, u) considered as an operator on L2(D n 1 x 1 < 2R) is compact, 
(T(s, &) + 1)-l exists unless (T(s, i& + 1)f = 0 for some nonzero 
~EL~(D n ) x 1 < 2R). In this case u defined by (*) is an &-incoming 
solution to the homogeneous equation and standard arguments show u = 0. 
Thus 2~ = 0 for 1 x j < R which impliesf = 0 for I x 1 < R. Also w = 0 for 
[ x j > 2R and e, - w = (-l/p)w for I x 1 < 2R. Thus .z = (1//3)w is a 
solution to 

(fl + po2 + i(1 - B)) z = 0. c**> 

z belongs to H2(j x I < 2R) and vanishes on 1 x I = 2R. Multiplication by .% 
and an integration by parts in (**) shows .z = 0 for R < I x ( < 2R. Thus 
f G 0 and we conclude (T(s, u) + 1)-l exists for o in a neighborhood of &,. 

Hence it is possible to represent a solution to our original problem in the 
form (*) with f = (T(s, U) + I)-lg. F or u near ipo there is a unique u-in- 
coming solution and it is the one given by (*). In particular, when u is near 
ipO , we can represent u(~(s, r), I, U, s) as the sum of a smooth function and a 
solution in the form (*) to (M(s) - u2) u = g, where g is a smooth function 
of (x, E, u, s) vanishing for I x 1 > R. This leads directly to the desired 
smoothness of U(X, 6, u, s). 
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