A Hamiltonian-based Solution to the Mixed Sensitivity Problem for Stable Pseudorational Plants

Kenji Kashima*, Yutaka Yamamoto* and Hitay Özbay†

*{kashima, yy}@acs.i.kyoto-u.ac.jp,
Department of Applied Analysis and Complex Dynamical Systems, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, JAPAN,
†ozbay@ee.eng.ohio-state.edu,
Department of Electrical and Electronics Engineering, Bilkent University, Bilkent, Ankara TR-06800, TURKEY; on leave from The Ohio State University, USA.

Abstract—In this paper, we consider the mixed sensitivity optimization problem for infinite-dimensional stable plants. This problem is reducible to a one-block H^∞ problem with a structured weighting function, which violates the assumption of the well-known Zhou-Khargonekar formula. We derive a Hamiltonian-based solution to compute the optimal performance level, by extending the formula to such case. A numerical example is given to illustrate the result.

I. INTRODUCTION

Since mid-1980’s several techniques have been developed for the H^∞ control of infinite-dimensional systems. In particular, for the one-block problem to find

$$\rho_{opt} := \inf_{Q \in H^\infty} \| W - m_o Q \|_\infty$$

with general inner function m_o and rational weights W, involving time delay systems with rational weights, a beautiful formula, so-called the Zhou-Khargonekar formula, has been established [6], [10], [11]: Let (A, B, C) be a minimal realization of W. Define its Hamiltonian H_ρ by

$$H^W_\rho := \begin{bmatrix} A & BB^T/\rho \\ -C^TC/\rho & -A^T \end{bmatrix}.$$ \hspace{1cm} (1)

Suppose that m_o is analytic on the set of eigenvalues of H_ρ. Then the optimal sensitivity ρ_{opt} is the maximum ρ such that

$$\det m_o(-H_\rho)_{22} = 0$$

where M_{22} denotes the $(2, 2)$-block of matrix M. It also has a natural extension to the two-block case [2]. Furthermore, when the underlying plant structure is specified by the so-called pseudorational transfer functions [8], we do not need explicit numerical computations of roots and zeros of the associated transfer functions, to determine the related inner function m_o [3].

In this paper, we consider the mixed sensitivity optimization problem

$$\gamma_{opt} := \inf_{C \text{ stabilizing} } \rho \left\| \begin{bmatrix} W_1(1 + PC)^{-1} \\ W_2PC(1 + PC)^{-1} \end{bmatrix} \right\|_\infty,$$ \hspace{1cm} (2)

where W_1 and W_2 are rational weights, and P is a stable pseudorational plant with its inner part m_o. This problem is known to be a typical two-block problem. However we cannot apply the Hamiltonian-based formula of [2], since a "generic" assumption of the formula is almost always violated [4]. In view of this, we derive a Hamiltonian-based formula for the mixed sensitivity computation, by reducing the structured two-block problem to a one-block problem. This result can be viewed as an extension of the Zhou-Khargonekar formula to a specific structured one-block problem.

The paper is organized as follows: in the next section we review some preliminary results on pseudorational systems. In Section III, we briefly summarize the observations made in [3] and state drawbacks in more precise term. In Section IV, we derive a Hamiltonian-based solution for the structured one-block problem. A numerical example is given in Section V, and concluding remarks are made in the last section.

NOTATION AND CONVENTION

As usual, H^p and H^p_∞ denote the Hardy spaces on the open right- and left-half complex plane, respectively. Let $q(s) := q(-s)$. For an inner function m, $H(m) := H^2 \ominus mH^2$. It is known that

$$H(m) = \{ x \in H^2 : m^*x \in H^2 \}.$$ \hspace{1cm} (3)

For a given distribution α, $\text{supp} \alpha$ denotes its support, and

$$\ell(\alpha) := \inf \{ t : t \in \text{supp} \alpha \},$$

$$r(\alpha) := \sup \{ t : t \in \text{supp} \alpha \}.$$

Let $E^t(\mathbb{R}_{-})$ denote the space of distributions having compact support in $(-\infty, 0]$. $D^t_+(\mathbb{R})$ is the space of distributions having support bounded on the left. Clearly $E^t(\mathbb{R}_{-}) \subset D^t_+(\mathbb{R})$. Provided that a distribution α is Laplace transformable, its Laplace transform is denoted by $\hat{\alpha}(s)$.
II. PRELIMINARIES ON PSEUDORATIONAL SYSTEMS

We first give the definition of pseudorational impulse responses. This class plays a crucial role in realization, modeling, and control of infinite-dimensional systems, particularly delay-differential systems [8], [9].

Definition 2.1: Let \(f \) be a distribution having support in \([0, \infty)\). It is said to be pseudorational if there exist \(q, p \in \mathcal{E}'(\mathbb{R}_-) \) such that

1. \(q^{-1} \) exists over \(\mathcal{D}'_+(\mathbb{R}) \),
2. \(\text{ord} q^{-1} = -\text{ord} q \),
3. \(f \) can be written as

\[
f = q^{-1} \ast p,
\]

where \(\text{ord} q \) denotes the order of a distribution \(q \) [5].

If \(f \) is pseudorational, its associated transfer function \(\hat{f} \) is also said to be pseudorational. From the Paley-Wiener-Schwartz theorem [5], in the Laplace domain, pseudorational transfer functions are also the ratio of entire functions of exponential type—the simplest extension of polynomials. For stable pseudorational plant \(P \),

\[
\rho_{\text{opt}} := \inf_{Q \in H^\infty} \| W - PQ \|_{\infty}
\]

(4)
can be computed by the following:

Lemma 2.2: ([3]) Let stable pseudorational plant \(P = \hat{p}_1 \hat{p}_2 / \hat{q} \) with \(1/\hat{q} \), \(1/\hat{p}_1 \) and \(e^{(\hat{p}_2)^*} / \hat{p}_2 \) \(\in H^\infty \) and \((A, B, C) \) be a minimal realization of \(\hat{W} \) Define the Hamiltonian \(H_p \) of \(W \) by (1). Suppose that \(1/\hat{p}_2 \) is analytic on the set of eigenvalues of \(H_p \). Then \(\rho_{\text{opt}} \) in (4) is the maximum \(\rho \) that satisfies

\[
\det (e^{LH_p} \hat{p}_2^{-1} (H_p) \hat{p}_2 (H_p)^{-1} |_{22}) = 0
\]

where \(L := -\ell(q) + \ell(p_1) - r(p_2) \).

Notice that the given plant \(P \) is not necessarily inner.

III. MIXED SENSITIVITY PROBLEM

A. Two-block problem

In this section, we show that weighting functions have some specific structure when we reduce the mixed sensitivity problem to standard two-block problem. By the Youla parameterization, all stabilizing controllers are given by \(C = Q (1 - PQ)^{-1}, Q \in H^\infty \). Hence we obtain

\[
\gamma_{\text{opt}} = \inf_{Q \in H^\infty} \left\| \begin{bmatrix} W_1 (1 - PQ) & W_2 PQ \end{bmatrix} \right\|_{\infty}.
\]

(5)

First, introduce the following spectral factorization \(G^*(W_1W_1 + W_2W_2)G = 1 \),

\[
G^*(W_1 W_1 + W_2 W_2)G = 1,
\]

(6)

where both \(G \) and \(G^{-1} \) have no unstable poles. Then it follows that

\[
L_1 := \begin{bmatrix} (W_1 G)^* & (-W_2 G)^* \\ W_2 G & W_1 G \end{bmatrix}, \quad L_2 := \begin{bmatrix} m_d & 0 \\ 0 & 1 \end{bmatrix}
\]

are unitary, where \(m_d \) is a finite Blaschke product consisting of the unstable poles of \((W_1 G)^* \) [1]. Hence, by multiplying (5) from the left by \(L_2 L_1 \), we obtain

\[
\gamma_{\text{opt}} = \inf_{Q(s) \in H^\infty} \left\| \begin{bmatrix} W - P_0 Q \end{bmatrix} \right\|_{\infty},
\]

(7)

where

\[
\begin{align*}
P_0 & := m_d P_1 \\
V & := W_1 W_2 G \\
W & := W_1 m_d (W_1 G)^*.
\end{align*}
\]

(8), (9), (10)

Note that both \(W \) and \(V \) are finite dimensional and stable. This type of problem is considered in [2], and a Hamiltonian-based solution is derived. However, in [2], it is assumed that \(V \) and \(W \) have no common poles. In the mixed sensitivity problem, the functions \(W \) and \(V \) need to be in the form (9) and (10). That means unless \(W_1 \) and \(W_2 \) are chosen in some specific manner, \(W \) and \(V \) will have common poles, i.e., the assumption in [2] is almost always violated.

B. One-block problem

Again, applying the standard techniques, see e.g. [1], we now reduce the two-block \(H^\infty \) problem (7) to a one-block problem. First, suppose that \(\gamma > \| V \|_{\infty} \) satisfies \(\gamma = \gamma_{\text{opt}} \).

Then there exists \(Q \in H^\infty \) such that

\[
\| W - P_0 Q \|^2 + \| V \|^2 = \gamma^2.
\]

Here, since \(\gamma > \| V \|_{\infty} \), there exists the spectral factorization \(F_\gamma \)

\[
F_\gamma (\gamma^2 - V^* V) F_\gamma = 1, \quad \gamma > \| V \|_{\infty}
\]

(11)

where both \(F_\gamma \) and \(F_\gamma^{-1} \) belong to \(H^\infty \). Therefore, by defining \(W_\gamma := F_\gamma W \), we see that \(\gamma = \gamma_{\text{opt}} \) if and only if

\[
\mathcal{J}(\gamma) := \inf_{Q \in H^\infty} \| W_\gamma - m_d Q \|_{\infty} = 1.
\]

(12)

It looks like that we can handle such structural two-block \(H^\infty \) problem (7) according to Zhou-Khargonekar formula. But, in fact, \(\gamma \)-dependent rational weights \(W_\gamma \) and a finite Blaschke product \(m_d \) are determined by \(W_1 \) and \(W_2 \). Let us consider the Hamiltonian matrix

\[
H_W^{W_\gamma} := \begin{bmatrix} A_\gamma & B_\gamma B_\gamma^T \\ -C_\gamma C_\gamma & -A_\gamma^T \end{bmatrix},
\]

(13)

where \((A_\gamma, B_\gamma, C_\gamma) \) is a minimal realization of \(W_\gamma \). Notice that from equations (6), (9), (10) and (11)

\[
1 - W_\gamma^{-*} W_\gamma = (\gamma^2 - W_\gamma^{-*} W_1) F_\gamma^{-*} F_\gamma.
\]

Here eigenvalues of \(H_W^{W_\gamma} \) are the zeros of the right hand side, see Appendix and [4] for a detailed discussion. Therefore there always exits nonsingular matrix \(T \) such that

\[
H_W^{W_\gamma} = T^{-1} \begin{bmatrix} H_W^1 & A_d \\ -A_d & -A_d \end{bmatrix} T,
\]

(14)

where
• $H_{W_1}^\gamma$ is the γ-dependent Hamiltonian matrix of W_1,
• A_d is a γ-independent square matrix, whose eigenvalues are poles of m_d, i.e., $(sI - A_d)^{-1} \in H(m_d)$.

This means that there is a coincidence between poles of m_d and eigenvalues of $H_{W_1}^\gamma$, i.e., the assumption of the formula is also almost always violated. In practice, we can circumvent this problem by slightly altering the modified weight V and obtain upper and lower bounds for the optimal value [4]. In what follows, we derive a Hamiltonian-based formula for the optimal mixed sensitivity computation, i.e., the structured one-block problem to find γ satisfying (12).

IV. MAIN RESULT

We first define $m := m_d m_v$ and the compression of W_γ to $H(m)$

$$W_c : H(m) \to H(m) : x \mapsto \pi^m W_\gamma x.$$

where π^m denotes the orthogonal projection from H^2 onto $H(m)$. It is known that $\mathcal{F}(\gamma) = ||W_c||_{H(m)}$. Let us consider singular value equation

$$y = W_c x, \quad x = W_c^* y.$$

We can show that x, y belong to $H(m)$ and that these are characterized by finite dimensional vector ξ and $\zeta \in \mathbb{R}^n$, where n is the order of W_c, as follows:

$$y = W_c x - m(s) C_{\gamma}(sI - A_{\gamma})^{-1} \xi$$

$$x = W_c^* y + B_{\gamma}(sI + A_{\gamma}^T)^{-1} \zeta.$$

Then we can obtain the following Hamiltonian-based condition [10]:

Lemma 4.1: Under the definition above, 1 is a singular value of W_c if and only if there exists a nonzero vector $[\xi^T \zeta^T]^T \in \mathbb{R}^{2n}$ such that

$$\Phi := (sI - H_{W_1}^\gamma)^{-1} \begin{bmatrix} m(s) \xi \\ \zeta \end{bmatrix},$$

$$\Phi \in H(m).$$

(15)

From this lemma, we can obtain the Zhou-Khargonekar formula by invoking Dunford integral. Assume that m is analytic at eigenvalues of $H_{W_1}^\gamma$. Let Δ_1 be a closed rectifiable contour that encircles all eigenvalues of $H_{W_1}^\gamma$, but none of the singularities of m^γ. Since m^γ is analytic at eigenvalues of $H_{W_1}^\gamma$, this is possible. Consider the integral

$$-\frac{1}{2\pi i} \int_{\Delta_1} (sI - H_{W_1}^\gamma)^{-1} \begin{bmatrix} \xi \\ m^\gamma(s) \zeta \end{bmatrix} ds$$

Notice that, by spectral integral theory, the integral above is

$$\begin{bmatrix} \xi \\ 0 \end{bmatrix} + m^\gamma(H_{W_1}^\gamma) \begin{bmatrix} 0 \\ \zeta \end{bmatrix}.$$

On the other hand, for (15) to hold, this integral must be equal to 0. Hence there exists a nonzero vector $[\xi^T \zeta^T]^T$ such that

$$\begin{bmatrix} \xi \\ 0 \end{bmatrix} = -m^\gamma(H_{W_1}^\gamma) \begin{bmatrix} 0 \\ \zeta \end{bmatrix}$$

or equivalently $\det m^\gamma(H_{W_1}^\gamma)_{22} = 0$. However, when eigenvalues of $H_{W_1}^\gamma$ includes some poles of $m(s)$ as in the case of the mixed sensitivity computation, we cannot take such closed contour Δ_1.

In what follows, we assume that m is analytic at eigenvalues of $H_{W_1}^\gamma$ and define

$$\begin{bmatrix} T_1^T & T_2^T & T_3^T \end{bmatrix}^T := T,$$

(16)

partitioned accordingly as (14). Then the main result of this work is the following:

Theorem 4.2: Define $H_{W_1}^\gamma$ and T_i ($i = 1,2,3$) by (1), (14) and (16). Suppose that m is analytic at eigenvalues of $H_{W_1}^\gamma$. Then 1 is a singular value of W_c if and only if there exists a nonzero vector $[\xi^T \zeta^T]^T \in \mathbb{R}^{2n}$ such that

$$T_1 \begin{bmatrix} \xi \\ 0 \end{bmatrix} = -m^\gamma(H_{W_1}^\gamma) T_1 \begin{bmatrix} 0 \\ \zeta \end{bmatrix}$$

(17)

$$T_2 \begin{bmatrix} \xi \\ 0 \end{bmatrix} = 0, \quad T_3 \begin{bmatrix} 0 \\ \zeta \end{bmatrix} = 0.$$

(18)

Proof: First, (15) holds if and only if $T \Phi \in H(m)$, since T is nonsingular. Therefore the condition (15) in Lemma 4.1 can be written as

$$(sI - H_{W_1}^\gamma)^{-1} T_1 \begin{bmatrix} m(s) \xi \\ \zeta \end{bmatrix} \in H(m),$$

(19)

$$(sI - A_d)^{-1} T_2 \begin{bmatrix} m(s) \xi \\ \zeta \end{bmatrix} \in H(m),$$

(20)

$$(sI + A_d)^{-1} T_3 \begin{bmatrix} m(s) \xi \\ \zeta \end{bmatrix} \in H(m).$$

(21)

Similarly to the discussion above, the condition (19) can be characterized as a rank condition of a matrix. Let Δ be a closed rectifiable contour that encircles all eigenvalues of $H_{W_1}^\gamma$, but none of the singularities of m^γ. Then, for (19) to hold, we must have

$$-\frac{1}{2\pi i} \int_{\Delta} (sI - H_{W_1}^\gamma)^{-1} T_1 \begin{bmatrix} \xi \\ m^\gamma(s) \zeta \end{bmatrix} ds = 0$$

This leads to (17).

We now consider the condition (20). Recall that we have $(sI - A_d)^{-1} \in H(m_d) \subset H(m)$. Hence (20) is equivalent to saying that

$$m(s)(sI - A_d)^{-1} T_2 \begin{bmatrix} \xi \\ 0 \end{bmatrix} \in H(m).$$

Then, by (3), we have

$$(sI - A_d)^{-1} T_2 \begin{bmatrix} \xi \\ 0 \end{bmatrix} \in H^2.$$

Because A_d has no unstable pole, this implies

$$T_2 \begin{bmatrix} \xi \\ 0 \end{bmatrix} = 0.$$
We now move to (21). We have $m(s)(sI + A_d)^{-1} \in H(m)$ and eigenvalues of the matrix $-A_d$ are all unstable. Therefore we must have

$$T_3 \left[\begin{array}{c} 0 \\ \zeta \end{array} \right] = 0.$$

This completes the proof.

Remark 4.3: This result includes the Zhou-Khargonkar formula. In other words, when the assumption of the formula is violated, there are additional conditions (18).

V. EXAMPLE

Suppose that the weighting functions are given by

$$W_1(s) = \frac{1}{s + 1}, \quad W_2(s) = \frac{s + 0.5}{s + 1}$$

and a stable pseudorational plant

$$P(s) = \frac{e^s - 2}{2e^{2s} - 1} \in H^{\infty}.$$

Then the inner part of the plant m_v is given by

$$m_v := e^{-s} - \frac{2e^{-s} - 1}{2 - e^{-s}}.$$

The inner function m_d is given by

$$m_d(s) = \frac{s - \sqrt{5}/2}{s + \sqrt{5}/2},$$

and V and W are

$$V(s) = \frac{1}{(s + 1)(s + \sqrt{5}/2)}, \quad W(s) = \frac{s + 0.5}{(s + 1)(s + \sqrt{5}/2)}.$$

We can see that V and W has common poles. Next, W_γ are given by

$$W_\gamma = \frac{1}{\gamma(s^2 + bs + a)},$$

where $a = \sqrt{\frac{5 - \gamma^2}{2}}$ and $b = \sqrt{\frac{9}{2} + 2a - \gamma^{-2}}$. Here eigenvalues of $H_1^{W_\gamma}$ are $s = \pm \sqrt{5}/2, \pm \sqrt{1 - \gamma^{-2}}$, including the pole of m_d.

In [4], by changing the weighting function W_γ slightly, it has been shown that $0.852 < \gamma_{\text{opt}} < 0.857$. Figure 1 shows the smallest singular values of the matrix corresponding to Theorem 4.2 versus γ. We can see $\gamma_{\text{opt}} \approx 0.8567$ and this satisfies the estimation above.

VI. CONCLUSIONS

We have derived a Hamiltonian-based solution to the optimal mixed sensitivity problem for stable pseudorational plants. This result can be viewed as an extension of the Zhou-Khargonkar formula to a specific structured one-block problem.

REFERENCES

APPENDIX

Here we see the structure of weighting functions. Consider rational weighting functions

$$W_1 = \frac{n_1}{d_1}, \quad W_2 = \frac{n_2}{d_2},$$

where pairs of polynomials (d_i,n_i) ($i = 1,2$) are coprime. For simplicity, we assume that d_1 and d_2 has no common zeros. Let us take a stable polynomial d_G such that

$$d_G d_G^- = n_1 n_1^- d_2 d_2^- + n_2 n_2^- d_1 d_1^-.$$

Then we have $G = d_G d_G^-$ and $m_d = d_G^-$. Hence weighting functions in the two-block problem (7) are given by $W = \frac{n_1 n_1^- d_2 d_2^-}{d_G d_G^-}$ and $V = \frac{n_2 n_2^-}{d_G}$, and have common poles. Now let us define a stable polynomial d_F such that

$$d_F d_F^- = \gamma^2 d_G d_G^- - n_1 n_1^- n_2 n_2^-.$$

The function F_γ satisfying (11) is given by $F_\gamma = \frac{d_F}{d_F^\gamma}$, and its zeros are poles of m_d.