HOW NONCOMMUTING
ALGEBRA ARISES IN SYSTEMS
THEORY

Bill at UC San Diego
helton@ucsd.edu
\[
\frac{dx(t)}{dt} = Ax(t) + Bv(t) \\
y(t) = Cx(t) + Dv(t)
\]

\(A, B, C, D\) are matrices

\(x, v, y\) are vectors

Asymptotically stable

\[
\text{Re}(\text{eigvals}(A)) < 0 \iff A^T E + EA < 0 \quad E > 0
\]

Energy dissipating

\[
G : L^2 \to L^2
\]

\[
\int_0^T |v|^2 dt \geq \int_0^T |Gv|^2 dt
\]

\(x(0) = 0\)

\[
\exists \quad E = E^T \succeq 0
\]

\[
H := A^T E + EA + EBB^T E + C^TC = 0
\]

\(E\) is called a storage function

Two minimal systems

\([A, B, C, D]\) and \([a, b, c, d]\)

with the same input to output map.

\[
\exists \quad M \text{ invertible, so that}
\]

\[
MAM^{-1} = a \\
MB = b \\
CM^{-1} = c
\]

\(\exists M \text{ invertible, so that}
\]

\[
(B \ AB \ A^2B \cdots) : \ell^2 \to X
\]

is onto
H∞ Control Problem

Given
\[A, B_1, B_2, C_1, C_2, D_{12}, D_{21} \]

Find
\[K \]

\[\frac{dx}{dt} = Ax + B_1w + B_2u \]
\[\text{out} = C_1x + D_{12}u + D_{11}w \]
\[y = C_2x + D_{21}w \]

\[D_{21} = I \quad D_{12}D_{12}' = I \quad D_{12}'D_{12} = I \quad D_{11} = 0 \]

PROBLEM: Find a control law \(K : y \rightarrow u \) which makes the system dissipative over every finite horizon:

\[T \int_0^T |\text{out}(t)|^2 dt \leq \int_0^T |w(t)|^2 dt \]

The unknown \(K \) is the system

\[\frac{d\xi}{dt} = a\xi + b \quad u = c\xi \]

So \(a, b, c \) are the critical unknowns.
CONVERSION TO ALGEBRA

Engineering Problem: Make a given system dissipative by designing a feedback law.

Given

\[
\begin{pmatrix}
A, B_1, C_1, \\
B_2 C_2
\end{pmatrix}
\|
D
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
\]

Find

\[a \ b \ c\]

DYNAMICS of “closed loop” system: BLOCK matrices

\[
\begin{pmatrix}
A & B & C & D
\end{pmatrix}
\]

ENERGY DISSIPATION:

\[
H := \mathcal{A}^T \mathbf{E} + \mathbf{E} \mathcal{A} + \mathbf{E} \mathcal{B} \mathcal{B}^T \mathbf{E} + \mathcal{C}^T \mathcal{C} = 0
\]

\[
\mathbf{E} = \begin{pmatrix}
\mathbf{E}_{11} & \mathbf{E}_{12} \\
\mathbf{E}_{21} & \mathbf{E}_{22}
\end{pmatrix}
\quad \mathbf{E}_{12} = \mathbf{E}_{21}^T
\]

\[
H = \begin{pmatrix}
H_{xx} & H_{xy} \\
H_{yx} & H_{yy}
\end{pmatrix}
\quad H_{xy} = H_{yx}^T
\]
H^∞ Control Problem

ALGEBRA PROBLEM:
Given the polynomials:

\[
H_{xx} = E_{11} A + A^T E_{11} + C_1^T C_1 + E_{12}^T b C_2 + C_2^T b^T E_{12}^T + \nonumber
\]
\[
E_{11} B_1 b^T E_{12} + E_{11} B_1 B_1^T E_{11} + E_{12} b b^T E_{12}^T + E_{12} b B_1^T E_{11} \nonumber
\]
\[
H_{xz} = E_{21} A + \frac{a^T (E_{21} + E_{12}^T)}{2} + c^T C_1 + E_{22} b C_2 + c^T B_2^T E_{11}^T + \nonumber
\]
\[
E_{21} B_1^T (E_{21} + E_{12}^T) + E_{21} B_1 B_1^T E_{11} + \frac{E_{22} b b^T (E_{21} + E_{12}^T)}{2} + E_{22} b B_1^T E_{11} \nonumber
\]
\[
H_{zx} = A^T E_{21}^T + C_1^T c + \nonumber
\]
\[
\frac{(E_{12} + E_{21}^T)}{2} a + E_{11} B_2 c + C_2^T b^T E_{22}^T + \nonumber
\]
\[
E_{11} B_1 b^T E_{22}^T + E_{11} B_1 B_1^T E_{21} + \frac{(E_{12} + E_{21}^T)}{2} b b^T E_{22}^T + \frac{(E_{12} + E_{21}^T)}{2} b B_1^T E_{21} \nonumber
\]
\[
H_{zz} = E_{22} a + a^T E_{22}^T + c^T c + E_{21} B_2 c + c^T B_2^T E_{21}^T + E_{21} B_1 b^T E_{22}^T + \nonumber
\]
\[
E_{21} B_1 B_1^T E_{21}^T + E_{22} b b^T E_{22}^T + E_{22} b B_1^T E_{21} \nonumber
\]

(HGRAIL) A, B_1, B_2, C_1, C_2 are knowns.

Solve the inequality $\begin{pmatrix} H_{xx} & H_{xz} \\ H_{zx} & H_{zz} \end{pmatrix} \succeq 0$ for unknowns a, b, c and for E_{11}, E_{12}, E_{21} and E_{22}

When can they be solved?

If these equations can be solved, find formulas for the solution.
TEXTBOOK SOLUTION TO THE \(H^\infty \) PROB

DGKF = Doyle-Glover Kargonekar - Francis 1989 ish

KEY Riccatis

\[
DGKF_X := (A - B_2 C_1)'X + X(A - B_2 C_1) + X(\gamma^{-2} B_1 B'_1 - B_2^{-1} B'_2)X
\]

\[
DGKF_Y := A^\times Y + Y A^\times' + Y(\gamma^{-2} C'_1 C_1 - C'_2 C_2)Y
\]

here \(A^\times := A - B_1 C_2 \).

THM DGKF There is a system \(K \) solving the control problem if there exist solutions

\[
X \succeq 0 \quad \text{and} \quad Y \succ 0
\]

to inequalities the

\[
DGKF_Y \preceq 0 \quad \text{and} \quad DGKF_X \preceq 0
\]

which satisfy the coupling condition

\[
X - Y^{-1} \prec 0.
\]

This is iff provided \(Y \succeq 0 \) and \(Y^{-1} \) is interpreted correctly.
Riccati Inequalities

\[
A_1'X + XA_1 + XQ_1X + R_1 \preceq 0 \\
A_2'X + XA_2 + XQ_2X + R_2 \preceq 0 \\
X \succeq 0
\]

These are “matrix convex” in the unknown \(X \) provided \(Q_1, Q_2 \) are positive semidefinite matrices. If such an \(X \) exists, then can simultaneously control or stabilize several systems.

Numerical Solution Can solve convex (especially linear) matrix inequalities numerically with \(X \) smaller than 150 \(\times \) 150 matrices using interior point optimization methods - called [semidefinite programming](https://en.wikipedia.org/wiki/Semidefinite_programming).

Main Algebra Problem “Convert” your engineering problem to a set of equivalent ‘convex matrix inequalities” .