MATH 10B

WEEK 9

Differential equations

1. General and specific solutions:

Recall we have seen function equations, that is, for what numbers \(x \) is the equality

\[x^2 - 4x + 6 = 4x - x^2 \]

true?

We solve:

\[
\begin{align*}
2x^2 - 8x + 6 &= 0 \\
\Rightarrow 2(x - 1)(x - 3) &= 0 \\
\Rightarrow x &= 1, 3
\end{align*}
\]

→ A differential equation asks for what functions \(u(x) \) does a given equality hold; the first examples are antiderivatives!
Example

1. For which functions \(u(x) \) does the equality
\[
\frac{du}{dx} = \cos(x) + 2x
\]
hold?

This is precisely asking for the antiderivative of \(\cos(x) + 2x \):

\[
u = \int \frac{du}{dx} \, dx = \int (\cos(x) + 2x) \, dx = \sin(x) + x^2 + C
\]

\[\Rightarrow \boxed{u(x) = \sin(x) + x^2 + C}\]

is called the general solution; it gives the form of every possible specific solution, which correspond to a chosen value for \(C \).
we can find a specific solution by specifying some initial data:

\[u(0) = 2. \]

Then:

\[Z = u(0) = \sin(0) + 0^2 + C \]

\[\Rightarrow C = 2 \]

hence the specific solution is:

\[u(x) = \sin(x) + x^2 + 2 \]

As this initial data:

we say it is the answer to the Initial Value Problem:

\[\left\{ \begin{array}{l}
\frac{dy}{dx} = \cos(x) + 2x \\
u(0) = 2
\end{array} \right. \]
2. Population exponential growth:

The first (and possibly most important) example of a differential equation (DE) is the population or exponential growth equation:

\[
\frac{dP}{dt} = kP
\]

for some constant \(k \) (growth rate). The general solution is given by:

\[P(t) = Ae^{kt} \]

and specific solutions correspond to values for \(A \).
Example:

2) Solve the IVP

\[\frac{dP}{dt} = 3P \]
\[P(0) = 500 \]

The general solution is \(P(t) = Ae^{3t} \)

and therefore: \(500 = P(0) = Ae^0 = A \)

\[\Rightarrow A = 500 \]

\[\text{hence} \quad P(t) = 500e^{3t} \]
Suppose a bacteria culture has 100 cells and grows exponentially. After 1 hour it has increased to 400 cells.

(a) Find \(P(t) = \) population of culture at time \(t \) hours:

We know \(P(t) = Ae^{kt} \) since \(P(t) \) is exponential (population).

We are given \(\begin{cases} P(0) = 100 \\ P(1) = 400 \end{cases} \)

Therefore:

\[
100 = P(0) = Ae^0 = A \\
400 = P(1) = Ae^k \\
\Rightarrow (A=100) \text{ and } 400 = 100e^k \\
\Rightarrow 4 = e^k \Rightarrow (\ln(4)=k)
\]

Thus:

\[
P(t) = 100e^{\ln(4)t} = 100(4)^t
\]
(b) Find population after 2 hours

\[P(2) = 100(4)^2 = 100(16) = \frac{1600}{\text{bacteria}} \]

(c) Find rate of growth at 2 hours

i.e., find \(P'(2) \).

\[P'(t) = \ln(4) 100 e^{\ln(4)t} \]

\[\Rightarrow P'(2) = \ln(4) 100 e^{\ln(4)2} = \ln(4) \cdot 100 \cdot (16) = \frac{1600 \cdot \ln(4)}{\text{bacteria/hour}} \]

(d) At what time does the population reach 10000 cells?

i.e., for what \(t \) does \(P(t) = 10000 \)?

\[\Rightarrow 100e^{\ln(4)t} = 10000 \]

\[\Rightarrow e^{\ln(4)t} = 100 \]

\[\Rightarrow \ln(4)t = \ln(100) \Rightarrow t = \frac{\ln(100)}{\ln(4)} \text{ hours} \]
3. Checking solutions to D.E.'s:

Given a D.E. and (general or specific) solution, we can check the solution by plugging it in!

Examples:

6. Population: check \(P(t) = Ae^{kt} \)

is a general solution to \(\frac{dP}{dt} = kP \):

\[\frac{dP}{dt} = A \frac{d}{dt}(e^{kt}) = Ake^{kt} \]

\[kP = kAe^{kt} = Ake^{kt} \]

Hence \(P(t) \) satisfies the equation (for any \(A \)).
1. Check \(y = \frac{2}{3} e^t + e^{-2t} \)
 is a solution to \(\frac{dy}{dt} + 2y = 2et \)

- \(\frac{dy}{dt} = \frac{d}{dt} \left(\frac{2}{3} e^t + e^{-2t} \right) \)
 \[= \frac{2}{3} e^t - 2e^{-2t} \]
- \(2y = 2 \left(\frac{2}{3} e^t + e^{-2t} \right) \)
 \[= \frac{4}{3} e^t + 2e^{-2t} \]

\[\Rightarrow \frac{dy}{dt} + 2y = \frac{2}{3} e^t - 2e^{-2t} + \frac{4}{3} e^t + 2e^{-2t} \]
\[= \frac{6}{3} e^t = 2et \]

\[\checkmark \]

hence the given \(y \)
 satisfies the D.E.!
2. Find all A so that $y = Ae^t$ is a solution to

$$\frac{dy}{dt} + 2y = 2e^t$$

$$\frac{dy}{dt} = Ae^t$$

$$2y = 2Ae^t$$

$$\frac{dy}{dt} + 2y = Ae^t + 2Ae^t = 2e^t$$

$$e^{t \neq 0} \Rightarrow 3Ae^t = 2e^t$$

$$\Rightarrow 3A = 2 \Rightarrow A = \frac{2}{3}$$

Note: only one value of A works, hence $y = Ae^t$ is not a general solution for the D.E. $y' + 2y = 2e^t$.

9-10
3. Show that
\[y = -t\cos(t) - t \]
is a solution to the initial value problem
\[\begin{cases} ty' = y + t^2\sin(t) \\ y(\pi) = 0 \end{cases} \]

- \[\frac{dy}{dt} = \frac{d}{dt} (-t\cos(t) - t) \]
 \[= -[\cos(t) + t(-\sin(t))] - 1 \]
 \[= -\cos(t) + t\sin(t) - 1 \]
 \[\Rightarrow t\frac{dy}{dt} = -t\cos(t) + t^2\sin(t) - 1 \quad \text{(LHS)} \]

- \[y + t^2\sin(t) = -t\cos(t) - t + t^2\sin(t) \quad \text{(RHS)} \]

 So \(\text{LHS} = \text{RHS} \checkmark \) so solves the I.V.P.

- \[y(\pi) = -\pi\cos(\pi) - \pi = -\pi(-1) - \pi \]
 \[= \pi - \pi = 0 \]
 \[\Rightarrow y(\pi) = 0 \] so solves the I.V.P.
4) Show that \(y = \frac{\ln(x) + C}{x} \) solves the D.E.
\[x^2y' + xy = 1 \]

\[
\frac{dy}{dx} = \frac{d}{dx}\left(\frac{\ln(x) + C}{x} \right)
\]
\[
= \frac{d}{dx}\left(\frac{\ln(x)}{x} \right) + C \frac{d}{dx}\left(\frac{1}{x} \right)
\]
\[
= (\frac{-1}{x^2})\ln(x) + \left(\frac{1}{x} \right)\left(\frac{1}{x} \right) + \frac{-C}{x^2}
\]
\[
= -\frac{\ln(x)}{x^2} + \frac{1}{x^2} - \frac{C}{x^2}
\]
\[
\Rightarrow x^2\frac{dy}{dx} = -\ln(x) + 1 - C
\]

and \(xy = \frac{x\ln(x) + Cx}{x} = \ln(x) + C \)

hence \(x^2\frac{dy}{dx} + xy = -\ln(x) + 1 - C + \ln(x) + C \)
\[
= 1
\]
\[
\sqrt{\text{hence } y \text{ solves the D.E. for all } C}
\]
The spring equation is:

\[
\frac{d^2x}{dt^2} = -\frac{k}{m} x
\]

where \(x(t) \) is the position of a mass \(m \) on the end of a spring with constant \(k \).

The general solution is:

\[
x(t) = A \sin(\sqrt{\frac{k}{m}} t) + B \cos(\sqrt{\frac{k}{m}} t)
\]
Notice the general solution has 2 unknowns \(A \) and \(B \).

This is because the spring equation is a 2nd order, i.e., has 2nd derivatives. The general solution to an 2\(n \)th order equation will have \(N \) unknowns.

Check:

\[
X'(t) = A \sqrt{\frac{k}{m}} \cos(\sqrt{\frac{k}{m}} t) - B \sqrt{\frac{k}{m}} \sin(\sqrt{\frac{k}{m}} t)
\]

\[
X''(t) = -A \left(\frac{k}{m}\right) \sin\left(\sqrt{\frac{k}{m}} t\right) - B \left(\frac{k}{m}\right)^2 \sin\left(\sqrt{\frac{k}{m}} t\right)
\]

\[
= -\frac{Ak}{m} \sin\left(\frac{k}{m} t\right) - \frac{Bk}{m} \sin\left(\frac{k}{m} t\right)
\]

And:

\[
-\frac{k}{m} X(t) = -\frac{Ak}{m} \sin\left(\frac{k}{m} t\right) - \frac{Bk}{m} \sin\left(\frac{k}{m} t\right)
\]

Hence \(X(t) \) is a solution for all \(A, B \).
Examples:

0. Solve I.V.P.:
\[
\begin{align*}
\frac{d^2x}{dt^2} &= -4x \\
x(0) &= 0 \\
x'(0) &= 2
\end{align*}
\]

The general solution is:
\[x(t) = A\sin(2t) + B\cos(2t)\]

Then:
\[0 = x(0) = A\sin(0) + B\cos(0) = 0 + B \Rightarrow B = 0\]

and:
\[x'(t) = 2A\cos(2t) - 2B\sin(2t)\]

\[= 2 = x'(0) = 2A\cos(0) - 2B\sin(0) = 2A - 0 \Rightarrow A = 1\]

(specific)

Hence the solution is:
\[x(t) = \sin(2t)\]
5) Separable D.E.'s

Now we'll see how to build general solutions to a nice type of differential equation.

Recall the antiderivative problem, e.g.

\[
\frac{du}{dx} = \frac{1}{x} + 2
\]

We can use the notation to see the solution; multiply both sides by \(dx\) and then integrate!

\[
\Rightarrow \quad du = \left(\frac{1}{x} + 2\right)\,dx
\]

\[
\Rightarrow \quad u = \int \left(\frac{1}{x} + 2\right)\,dx
\]

\[
= \ln|x| + 2x + C
\]

Hence the general solution is

\[
U(x) = \ln|x| + 2x + C
\]
Notice that a D.E. is an antiderivative problem & it can be written:

\[\frac{dy}{dx} = (\text{expression in } x) \]

A separable D.E. is a D.E. which can be written:

\[\frac{du}{dx} = (\text{expression in } x) \left(\text{expression in } u \right) \]

Which we then re-write as:

\[\frac{du}{\left(\text{expression in } u \right)} = (\text{expression in } x) \, dx \]

and integrate to solve for \(u \):

\[\int \frac{du}{\left(\text{exp in } u \right)} = \int (\text{exp in } x) \, dx \]
Examples:

1. \(\frac{du}{dx} = (\frac{1}{x} + 2)(u) \)

\[\Rightarrow \quad \frac{du}{u} = (\frac{1}{x} + 2) \, dx \]

\[\Rightarrow \quad \int \frac{du}{u} = \int (\frac{1}{x} + 2) \, dx \]

\[\Rightarrow \quad \ln |u| + C_1 = \ln |x| + 2x + C_2 \]

\[\Rightarrow \quad \ln |u| = \ln |x| + 2x + C_2 - C_1 \]

\[= \ln |x| + 2x + C \]

\[\text{exponentialize both sides by } e \]

\[e^{\ln |u|} = e^{\ln |x| + 2x + C} \]

\[\Rightarrow \quad u = e^{\ln |x| + 2x + C} \]

\[= xe^{2x}e^C \]

\[= xe^{2x}A \]

\[A = e^C \]

\[\Rightarrow \quad u(x) = A \cdot e^{2x} \]

is the general solution
(2) \[u' = 1 + u + 2t + 2tu \]

\[\Rightarrow u' = 1 + 2t + u(1+2t) \]

\[= (1+2t)(1+u) \]

\[\Rightarrow \frac{du}{dt} = (1+2t)(1+u) \]

\[\Rightarrow \frac{du}{1+u} = (1+2t)dt \]

\[\Rightarrow \int \frac{du}{1+u} = \int (1+2t)dt \]

\[\Rightarrow \ln|1+u| = t + t^2 + C \]

\[\Rightarrow e^{\ln|1+u|} = e^{t + t^2 + C} \]

\[\Rightarrow 1+u = Ae^{t}e^{t^2} \]

\[\Rightarrow u = Ae^{t}e^{t^2} - 1 \]

General solution
\[\frac{dy}{dx} = \frac{x}{2y}, \quad \text{solve IVP.} \]

\[y(0) = -3 \]

\[\Rightarrow 2y \, dy = x \, dx \]

\[\Rightarrow \int 2y \, dy = \int x \, dx \]

\[\Rightarrow y^2 = \frac{x^2}{2} + C \]

\[\Rightarrow y = \pm \sqrt{\frac{x^2}{2} + C} \]

Don't forget the general solution.

Now \(y(0) = -3 \), hence:

\[-3 = y(0) = \pm \sqrt{\frac{0}{2} + C} = \pm \sqrt{C} \]

\[\Rightarrow C = 9 \]

\[\Rightarrow y(x) = -\sqrt{\frac{x^2}{2} + 9} \]

Specific solution (to the IVP)
Logistic equation:

\[
\frac{dP}{dt} = kP \left(1 - \frac{P}{M}\right)
\]

- models population with carrying capacity \(M \):
 note \(\frac{dP}{dt} = 0 \) at \(P = 0, M \)
 (no growth/change at population 0 or the carrying capacity)

- separable:

\[
\int \frac{dP}{(1 - \frac{P}{M})P} = \int k \, dt
\]

\[
k \, t + C = \int \frac{dP}{(1 - \frac{P}{M})P} \quad \text{need partial fractions!}
\]

\[
\frac{1}{(1 - \frac{P}{M})P} = \frac{A}{(1 - \frac{P}{M})} + \frac{B}{P}
\]

\[
\Rightarrow 1 = AP + B(1 - \frac{P}{M}) \Rightarrow P = 0: 1 = B
\]

\[
P = M: \frac{1}{M} = A
\]
\[\begin{align*}
\text{hence} & \quad kt + C = \int \frac{dP}{(1 - \frac{P}{M})^\gamma} = \int \left(\frac{1}{m(1 - \frac{P}{M})} + \frac{1}{P} \right) dP \\
& = \int \frac{dP}{M - P} + \int \frac{dP}{P} \\
& = -\ln|\frac{P}{M-P}| + \ln|P| \\
\Rightarrow \quad e^{kt+C} &= e^{-\ln(\frac{P}{M-P}) + \ln|P|} \\
& = e^{\ln|P|} \\
& = \frac{P}{e^{\ln|M-P|}} \\
& = \frac{P}{e^{\ln(M-P)}} = \frac{P}{M-P} \\
\Rightarrow \quad Ae^{kt} &= \frac{P}{M-P} \\
\Rightarrow \quad \frac{M-P}{P} &= A e^{-kt} \Rightarrow \frac{M}{P} - 1 = A e^{-kt} \\
& \Rightarrow \frac{M}{P} = A e^{-kt} + 1 \\
& \Rightarrow \frac{1}{P} = \frac{A e^{-kt} + 1}{M} \\
\Rightarrow \quad P &= \frac{M}{A e^{-kt} + 1} \quad \text{general solution}
\end{align*}\]