(1.) Approximating integrals (§5.9)

The chance that any given continuous function has a "closed form" antiderivative (i.e., that we can write $F(x)$ as a function of x explicitly) is very small!

\[\text{e.g., } \int_0^1 e^{-x^2} \, dx \text{ cannot be evaluated using FTC2 because we cannot write a function } F(x) \text{ such that } F'(x) = e^{-x^2} \]

In such cases we must approximate $\int_0^1 f(x) \, dx$ using the definition of integration via Riemann sums.
Recall:

Let $f(x)$ be continuous on the closed interval $a \leq x \leq b$.

Let the interval $a \leq x \leq b$ be subdivided into N sub-intervals of equal length $\frac{b-a}{N}$.

Then we define the \underline{left} and \underline{right} Riemann sums given by areas of the N rectangles over each subinterval:

$L_N = \sum_{n=0}^{N-1} \left(\frac{b-a}{N} \right) f\left(a + \left(\frac{b-a}{N} \right) n \right)$

- width of sub-interval = width of n^{th} rectangle
- height of n^{th} rectangle from left endpoint of the n^{th} subinterval

$R_N = \sum_{n=0}^{N-1} \left(\frac{b-a}{N} \right) f\left(a + \left(\frac{b-a}{N} \right)(n+1) \right)$

(same) - right endpt.
Remark: we also can write \(R_N \) using a different index of \(n \):

\[
R_N = \left(\sum_{n=1}^{N} \frac{b-a}{N} f\left(a + \frac{(b-a)}{N} n\right) \right)
\]

Note the change.

However, we use the \(n = 0, \ldots, N-1 \) index so our other formulas use the same index.

Now we can define two new Riemann sums that are given by the areas of the \(N \) trapezoids over each endpoint:

\[
M_N = \sum_{n=0}^{N-1} \left(\frac{b-a}{N} \right) f\left(a + \frac{(b-a)}{N}(\frac{2n+1}{2})\right)
\]

- width of \(n^{th} \) subinterval
- height of rectangle from midpoint of \(n^{th} \) subinterval
- "average height" of tangent line to trapezoid at the midpoint of \(n^{th} \) subinterval

This is the Midpoint Sum, the Riemann sum with rectangles whose heights are given
the midpoints of each sub-interval

However, these rectangles have the same area as the trapezoids associated with the tangent line to $f(x)$ at the midpoints; see the following picture:

\[
\text{(e.g.) } M_1 = \frac{a+b}{2} \quad \text{heights} \quad f(\frac{a+b}{2}) \quad f(\frac{a+b}{2}) \quad f(\frac{a+b}{2}) - L \quad f(\frac{a+b}{2}) + L
\]

\[
\text{area of rectangle: } f(\frac{a+b}{2})(b-a) \quad \text{area of trapezoid: } \frac{1}{2}(f(\frac{a+b}{2})-L+f(\frac{a+b}{2}+L)(b-a) \quad \Rightarrow \quad \text{equal areas}
\]
We also define the *Trapezoid Sum* which is given by the trapezoids over each subinterval associated with the secant line for $f(x)$ over the subinterval; see the picture:

$$\text{e.g. } T_1 = \sum_{n=0}^{N-1} \left(\frac{b-a}{N} \right) \left[\frac{f(a + \left(\frac{b-a}{N} \right) n) + f\left(a + \left(\frac{b-a}{N} \right) (n+1)\right)}{2} \right]$$

The general formula is:

- **width of nth trapezoid**
- **height of left side of nth trapezoid**
- **height of right side of nth trapezoid**
All four Riemann sums R_N, L_N, M_N, T_N all increase in accuracy as N approaches ∞.

Letting $I = \int_a^b f(x)\,dx$ the actual value of the integral, we can see in advance which sums are over/under-estimaters and which are most accurate; see the following:

If Increasing

$f_1 < T_1 < I < M_1 < R_1$

If Decreasing

$R_1 < T_1 < I < M_1 < L_1$
(2) Improper integrals (S5.10)

\[\int_a^b f(x) \, dx \] is improper if any of the points in the interval \(a \leq x \leq b \) are outside the domain of \(f \)

\[\Rightarrow \text{i.e., where } f(x) \text{ includes dividing by } 0, \text{ or if } a \text{ or } b \text{ is } \pm \infty \]

We can still evaluate such integrals using limits; for example, suppose \(b \) is not in the domain of \(f \). Then:

\[\int_a^b f(x) \, dx := \lim_{t \to b} \int_a^t f(x) \, dx \]

Now we may evaluate the integral since working inside the limit ensures we stay away from the "bad point" at \(b \).
Examples

(a) Is \(\int_0^1 \frac{dx}{3x-1} \) an improper integral?

See that \(f(x) = \frac{1}{3x-1} \) has domain all real numbers except \(x = \frac{1}{3} \).

This is in the interval \(0 \leq x \leq 1 \), hence

\[\text{yes} \] this integral is improper.

How do we set it up?

\[\Rightarrow \text{Split the integral @ } x = \frac{1}{3} : \]

\[\int_0^1 \frac{dx}{3x-1} = \int_0^{1/3} \frac{dx}{3x-1} + \int_{1/3}^1 \frac{dx}{3x-1} \]

Now we can write it using limits:

\[\int_0^1 \frac{dx}{3x-1} = \lim_{t \to 1/3^-} \left(\int_0^t \frac{dx}{3x-1} \right) + \lim_{t \to 1/3^+} \left(\int_t^1 \frac{dx}{3x-1} \right) \]

\[\text{Exercise: Show the integral diverges to } \infty \]
1. Evaluate $\int_0^\infty \frac{x \, dx}{(x^2 + 1)^2}$

\[\lim_{t \to \infty} \left(\int_0^t \frac{x \, dx}{(x^2 + 1)^2} \right) \]

Substitute:

\[u = x^2 + 1 \]
\[du = 2x \, dx \]
\[u(t) = t^2 + 1 \]
\[u(0) = 1 \]

\[\lim_{t \to \infty} \left(\int_1^{t^2 + 1} \frac{1}{u^2} \, du \right) \]

\[= \frac{1}{2} \lim_{t \to \infty} \left(\int_1^{t^2 + 1} \frac{du}{u^2} \right) \]

Solve the integral:

\[= \frac{1}{2} \lim_{t \to \infty} \left(\frac{1}{(t^2 + 1)} - \frac{1}{1} \right) \]

Using FTC 2:

\[F(u) = \frac{-1}{u} \]

\[= \frac{1}{2} \lim_{t \to \infty} \left(1 - \frac{1}{t^2 + 1} \right) \]

Solve the resulting limit:

\[= \frac{1}{2} - \frac{1}{2} \lim_{t \to \infty} \frac{1}{t^2 + 1} \]

Recall $\lim_{x \to \infty} \frac{1}{x} = 0$

\[= \frac{1}{2} \]

\[\boxed{\frac{1}{2}} \]
\[\int_{-\infty}^{0} \frac{dw}{\sqrt{1-w}} \]

\[\lim_{t \to -\infty} \int_{t}^{0} \frac{dw}{\sqrt{1-w}} = \lim_{t \to -\infty} \int_{1-t}^{1} \frac{-du}{\sqrt{u}} \]

\[\text{setup} \]

\[\text{Substitute:} \]
\[u = 1-w \]
\[du = -dw \]
\[u(0) = 1 \]
\[u(t) = 1-t \]

\[\text{solve integral:} \]
\[\text{with FTC2} \]
\[\text{and antiderivative} \]
\[F(u) = 2\sqrt{u} \]

\[\lim_{t \to -\infty} \left[2(1 - \sqrt{1-t}) \right] \]

\[= \lim_{t \to -\infty} \left[2(1 - \sqrt{1+t}) \right] \]

\[\text{now it is clear that the limit diverges to } -\infty \]

\[\text{so this integral diverges} \]
\[\int_{-\infty}^{-1} e^{-2x} \, dx \]

\[= \lim_{t \to -\infty} \int_{0}^{t} e^{-2x} \, dx \]

\[= \lim_{t \to \infty} \int_{-2t}^{2} e^{u} \left(\frac{du}{-2} \right) \]

Sub:
\[u = -2x \]
\[du = -2 \, dx \]
\[u(-1) = 2 \]
\[u(t) = -2t \]

\[\quad \Rightarrow \quad = \lim_{t \to \infty} \int_{-2t}^{2} e^{u} \, du \]

\[= \frac{1}{2} \lim_{t \to \infty} \left[e^{2} - e^{-2t} \right] \]

Evaluate the integral inside:
\[= \frac{1}{2} \left(e^{2} - \lim_{t \to \infty} e^{-2t} \right) \]

Evaluate limit:
\[= \frac{1}{2} \left(e^{2} - \infty \right) \]

\[= \frac{-e^{2}}{2} \]
\[\int_2^3 \frac{dx}{\sqrt{3-x}} = \lim_{t \to 3} \left(\int_2^t \frac{dx}{\sqrt{3-x}} \right) \\
= \lim_{t \to 3} \left(\left[\frac{2\sqrt{u}}{u} \right]_1^{3-t} \right) \\
= \lim_{t \to 3} \left[-(2\sqrt{3-t}) - 2 \right] \\
= \left(\lim_{t \to 3} \sqrt{2(3-t)} - \lim_{t \to 3} 2 \right) \\
= -(-2) = 2 \]
\(\int_{-\infty}^{\infty} \frac{dx}{1+x^2} \)

Remarks: Since the endpoints are \(\pm \infty \) and 0, we must split the integral.
Since our definition is for one undefined endpoint.

\[
= \int_{-\infty}^{0} \frac{dx}{1+x^2} + \int_{0}^{\infty} \frac{dx}{1+x^2}
\]

\[
= \lim_{t \to -\infty} \int_{t}^{0} \frac{dx}{1+x^2} + \lim_{s \to \infty} \int_{0}^{s} \frac{dx}{1+x^2}
\]

\[
= \lim_{t \to -\infty} \left[\arctan(x) \right]_{t}^{0} + \lim_{s \to \infty} \left[\arctan(x) \right]_{0}^{s}
\]

\[
= \lim_{t \to -\infty} \left[\arctan(0) - \arctan(t) \right] + \lim_{s \to \infty} \left[\arctan(s) - \arctan(0) \right]
\]

\[
= \lim_{t \to -\infty} (-\arctan(t)) + \lim_{s \to \infty} (\arctan(s))
\]

\[
= -\left(-\frac{\pi}{2} \right) + \frac{\pi}{2} = \frac{\pi}{2}
\]
Remark on $\lim \arctan(x)$:

Recall the graph of $\tan(x)$:

\[
\begin{align*}
\lim_{x \to \frac{\pi}{2}} \tan(x) &= +\infty \\
\lim_{x \to -\frac{\pi}{2}} \tan(x) &= -\infty
\end{align*}
\]

So the graph of $\arctan(x)$, the inverse of $\tan(x)$, is given by:

\[
\begin{align*}
\arctan(x) &= \frac{\pi}{2} \quad (x \to \infty) \\
\arctan(x) &= -\frac{\pi}{2} \quad (x \to -\infty)
\end{align*}
\]

and now it is easy to see that:

\[
\begin{align*}
\lim_{x \to \infty} \arctan(x) &= \frac{\pi}{2} \\
\lim_{x \to -\infty} \arctan(x) &= -\frac{\pi}{2}
\end{align*}
\]
\[
\int_1^\infty \frac{dx}{x^7} = \lim_{t \to \infty} \int_1^t \frac{dx}{x^7} = \lim_{t \to \infty} \left[\frac{-1}{6x^6} \right]_1^t
\]
\[
= \lim_{t \to \infty} \left(\frac{-1}{6t^6} + \frac{1}{6(1)^6} \right)
= \lim_{t \to \infty} \left(\frac{-1}{6t^6} \right) + \lim_{t \to \infty} \left(\frac{1}{6} \right)
= 0 + \frac{1}{6} = \frac{1}{6}
\]

\rightarrow \text{There is a general rule which tells us, in general, when an integral like the above is convergent:}

INTEGRAL P-TEST

\[
\int_1^\infty \frac{dx}{x^p} \text{ converges if } p > 1 \\
\text{and diverges if } p \leq 1
\]
\[\int_1^\infty \frac{x \, dx}{1 + x^2} = \lim_{t \to \infty} \left(\int_1^t \frac{x \, dx}{1 + x^2} \right) = \lim_{t \to \infty} \left(\int_{u(1)}^{u(t)} \frac{1}{u} \, (2 \, dx) \right) \]

Substitution:
\[u = 1 + x^2 \quad u(1) = 1 + 1^2 = 2 \]
\[du = 2 \, x \, dx \quad u(t) = 1 + t^2 \]

\[= \lim_{t \to \infty} \left(\frac{1}{2} \int_2^{1 + t^2} \frac{du}{u} \right) \]
\[= \frac{1}{2} \lim_{t \to \infty} \left(\ln |1 + t^2| - \ln |2| \right) = + \infty \]

(since \(\ln |1 + t^2| \) is increasing without bound for all \(t \))
→ Sometimes we just want to know whether a given improper integral converges, i.e. is less than oo.

→ For this purpose, we have:

\[\text{COMPARISON TEST} \]

Suppose \(f \) and \(g \) are continuous and \(0 \leq g(x) \leq f(x) \) for all \(x \geq \alpha \).

Then:

\[\int_{\alpha}^{\infty} g(x) \, dx \leq \int_{\alpha}^{\infty} f(x) \, dx \]

and therefore:

1. \(\int_{\alpha}^{\infty} f(x) \, dx \) convergent \(\Rightarrow \) \(\int_{\alpha}^{\infty} g(x) \, dx \) convergent

2. \(\int_{\alpha}^{\infty} g(x) \, dx \) divergent \(\Rightarrow \) \(\int_{\alpha}^{\infty} f(x) \, dx \) divergent
Now let's revisit example 7:

7' Is \(\int_1^\infty \frac{\ln x}{x^2} \) convergent?

Since \(x > 1 \), we have \(x^2 > 1 \).

\(x^2 \) is also positive, so we'll add it to both sides:

\[
x^2 + x^2 \geq 1 + x^2
\]

Now we invert:

\[
\frac{1}{2x^2} \leq \frac{1}{1 + x^2}
\]

And multiply both sides by \(x \):

\[
\frac{1}{2x} \leq \frac{x}{1 + x^2}
\]

Now apply comparison:

\[
\int_1^\infty \frac{1}{2x} \, dx \leq \int_1^\infty \frac{x}{1 + x^2} \, dx
\]

\[
\frac{1}{2} \left(\int_1^\infty \frac{dx}{x} \right) \quad \text{this is divergent by the } \frac{1}{x^p} \text{-test!}
\]
therefore, $\int_1^\infty \frac{x}{1+x^2} \, dx$ must also be divergent by comparison!

more examples:

8. Is $\int_0^\infty e^{-x^2} \, dx$ convergent?

To make our comparison we'll split the integral:

\[
\int_0^\infty e^{-x^2} \, dx = \int_0^1 e^{-x^2} \, dx + \int_1^\infty e^{-x^2} \, dx
\]

\[\rightarrow \text{this is a usual integral of a continuous function, hence we know it is finite.}\]

Now consider the function e^{-x^2} for $x > 1$
since $x > 1$, we know $x^2 \geq x$,
 hence $e^{x^2} \geq e^x$, hence:

\[
e^{-x^2} = \frac{1}{e^{x^2}} \leq \frac{1}{e^x} = e^{-x}
\]
Now apply comparison:
\[\int_1^\infty e^{-x^2} \, dx \leq \int_1^\infty e^{-x} \, dx\]
\[= \lim_{t \to \infty} \int_1^t e^{-x} \, dx\]
\[= \lim_{t \to \infty} (-e^{-t} - e^{-1})\]
\[= -\lim_{t \to \infty} e^{-t} + \lim_{t \to \infty} e^{-1}\]
\[= e^{-1}\]

hence \(\int_1^\infty e^{-x^2} \, dx\) is convergent

and thus \(\int_1^\infty e^{-x} \, dx\) is convergent by comparison

Hence
\[\int_0^\infty e^{-x^2} \, dx = \int_1^\infty e^{-x^2} \, dx + \int_0^1 e^{-x^2} \, dx\]
\[
\text{convergent, convergent}\]

Therefore \(\int_0^\infty e^{-x^2} \, dx\) is convergent
Important

Remark:

we needed to split the integral because we only get our companion inequality $e^{-x^2} \leq e^x$ for $x \geq 1$.