1. **GRAPHING FUNCTIONS**

We can use all of the tools we've collected to create accurate sketches of the graphs of functions.

Follow the following procedure:

1. Find the domain of f and the zeros of f
2. Find the domain of f' and the zeros of f'
 (i.e., find the critical points)
3. Determine the intervals where f is increasing or decreasing using the 1st. deriv. test on the sign of f'.
4. Determine the local extrema
5. Find the domain of f'' and the zeros of f''
 (i.e., points that are possible inflection points)
6. Determine the intervals where f is concave up or concave down using the sign of f''
7. Determine the horizontal asymptotes

In the future, we'll revisit this later.
Remark: the vertical asymptotes occur at points \(a \notin \text{dom}(f) \) such that \(\lim_{x \to a} f(x) = \pm \infty \), hence we find these when we determine the domain.

Example:

1. \(\text{dom}(f) = \{ x \in \mathbb{R} \mid x \neq d, p \} \)
 \(\text{Z}(f) = \{ x \in \mathbb{R} \mid f(x) = 0 \} = \{ e, l, n, q \} \)

2. \(\text{dom}(f') = \{ x \in \mathbb{R} \mid x \neq d, p \} \)
 \(\text{Z}(f') = \{ b, c, j, m \} \)

3. \(f \) is increasing on \((-\infty, b), (c, d), (d, j), (m, p) \)
 \(f \) is decreasing on \((b, c), (j, m), (p, \infty) \)

4. \(f \) has local max at \(x = b, j, p \)
 \(f \) has local min at \(x = c, m \)

\[\lim_{x \to d^-} f(x) = +\infty \]
\[\lim_{x \to d^+} f(x) = -\infty \]

\[y = f(x) \]
\[y = L \]
(5) \(\text{dom}(f'') = \{ x \in \mathbb{R} \mid x \neq a, \beta \} \)
\(Z(f'') = \{ a, k \} \)

(6) \(f \) is concave up on \((-\infty, a) \), \((c, d) \), \((k, \infty) \)
\(f \) is concave down on \((a, c) \), \((d, k) \)

hence \(f \) has points of inflection at \(x = a, d, k \), but not at \(x = \beta \).

(7) \(\lim_{x \to \infty} f(x) = L \)
\(\lim_{x \to -\infty} f(x) = M \)

We'll now briefly return to limits to learn \(\text{L'Hôpital's rule} \)
for evaluating such limits.
Theorem (L'Hôpital's rule)

If f and g are differentiable on an open interval containing a such that

\[f(a) = 0 = g(a) \]

Suppose further that $g'(x) \neq 0$

Then:

\[\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \]

Infinite version

The theorem is true for $a = \pm \infty$ provided that, instead,

\[\lim_{x \to \infty} f(x) = 0 = \lim_{x \to \infty} g(x) \]

or

\[\lim_{x \to \infty} f(x) = \pm \infty \text{ and } \lim_{x \to \infty} g(x) = \pm \infty \]

and

\[\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)} \]
Examples (§ 4.5)

(31) \[\lim_{x \to 0} \frac{\cos(x + \frac{\pi}{2})}{\sin(x)} = ? \]

Clearly \(\lim_{x \to 0} \cos(x + \frac{\pi}{2}) = 0 = \lim_{x \to 0} \sin(x) \),

so by L'Hôpital's rule:

\[\lim_{x \to 0} \frac{\cos(x + \frac{\pi}{2})}{\sin(x)} = \lim_{x \to 0} \frac{-\sin(x + \frac{\pi}{2})}{\cos(x)} = \frac{-\sin(0)}{\cos(0)} = -1 \]

(50) \[\lim_{x \to \infty} \left(\frac{x}{x+1} \right)^x = ? \]

We'll use properties of logs to make use of L'Hôpital's rule.

Let \(\lim_{x \to \infty} \left(\frac{x}{x+1} \right)^x = L \)

and take \(\ln \) of both sides; since \(\ln \) is continuous it can pass inside the limit (why?) and we get:
\[
\lim_{{x \to \infty}} \ln \left(\frac{x}{{x+1}} \right)^x = \ln(L)
\]

\[
\Rightarrow \lim_{{x \to \infty}} x \ln \left(\frac{x}{{x+1}} \right) = \ln(L)
\]

\[
\Rightarrow \lim_{{x \to \infty}} \frac{\ln \left(\frac{x}{{x+1}} \right)}{\frac{1}{x}} = \ln(L)
\]

So now the left side approaches \(\frac{0}{0} \), hence apply L'Hopital:

\[
\Rightarrow \lim_{{x \to \infty}} \left(\frac{\frac{x+1}{x} \left(\frac{x+1-x}{(x+1)^2} \right)}{-\frac{1}{x^2}} \right) = \ln(L)
\]

\[
\Rightarrow \lim_{{x \to \infty}} \left(\frac{\frac{1}{x(x+1)}}{-\frac{1}{x^2}} \right) = \ln(L)
\]

\[
\Rightarrow \lim_{{x \to \infty}} \frac{-x^2}{x(x+1)} = \ln(L)
\]

\[
\Rightarrow \lim_{{x \to \infty}} \frac{-x}{x+1} = \ln(L)
\]
Now apply L'Hopital again since the limit approaches ∞.

$$\lim_{x \to a} \frac{-1}{1} = \ln(L)$$

$$\Rightarrow \ln(L) = -1$$

$$\Rightarrow L = e^{-1}$$

55. \[\lim_{x \to \frac{\pi}{2}} \frac{\cos mx}{\cos nx} \] where $m, n \in \mathbb{Z}$, $m, n \neq 0$

Since the limit approaches $\frac{0}{0}$ we may apply L'Hopital's rule:

$$\lim_{x \to \frac{\pi}{2}} \frac{-m \sin(mx)}{-n \sin(nx)}$$

Now we are finished so long as 2 does not divide n, i.e. n is odd.
That is, if \(n \) is odd:

\[
\lim_{x \to \frac{\pi}{2}} \frac{-m \sin(mx)}{-n \sin(nx)} = \frac{-m \sin\left(\frac{mn\pi}{2}\right)}{-n \sin\left(\frac{mn\pi}{2}\right)}
\]

On the other hand, if \(n \) is even, the \(\text{L'Hôpital's rule} \) applies:

the numerator \(-n \sin(nx)\) approaches both numerator and denominator will approach 0; so apply \(\text{L'Hôpital's rule} \) again:

\[
\lim_{x \to \frac{\pi}{2}} \frac{-m^2 \cos(mx)}{-n^2 \cos(nx)} = \frac{m^2 \cos\left(\frac{mn\pi}{2}\right)}{n^2 \cos\left(\frac{mn\pi}{2}\right)}
\]

Since \(n \) is even, \(\frac{mn\pi}{2} \) is an integer multiple of \(\pi \), hence cosine is non-zero.
Now, for practice:

Try finding the critical points, etc. and sketching a graph of the preceding example.

\[
\text{line } \frac{x}{\pi} = \frac{\cos nx}{x} \quad \text{for } n \in \mathbb{Z}
\]

\[
\frac{\sin mx}{m} \quad \text{for } n \text{ odd}
\]

\[
\frac{m^2 \cos \left(\frac{m^2 \pi}{2} \right)}{m^2 \cos \left(\frac{m^2 \pi}{2} \right)}
\]
EXAMPLES OF GRAPHED FUNCTIONS (Ex 54.6)

18. \[y = \frac{1}{3}x^3 + x^2 + 3x \]

- \(\text{dom}(y) = \mathbb{R} \)
- \(y = 0 \iff \frac{1}{3}x^3 + x^2 + 3x = 0 \), so \(x = 0 \)
 or \(\frac{1}{3}x^2 + x + 3 = 0 \),
 i.e. \(x^2 + 3x + 9 = 0 \),
 which has no real roots (check!)
 hence \(\mathbb{Z}(y) = \{0\} \)

- \(y' = x^2 + 2x + 3 \): \(\text{dom}(y') = \mathbb{R} \)
 and \(y' = 0 \iff x^2 + 2x + 3 = 0 \)
 \(\iff x = -2 \pm \sqrt{4 - 4(1)(3)} \)
 \(\iff x = -2 \pm \sqrt{-8} \)
 hence \(y'(x) \) has no real
 \(\mathbb{Z}(y') = \{\} \)
\[y'' = 2x + 2 \quad \text{dom}(y'') = \mathbb{R} \]
and \(y'' = 0 \iff 2x + 2 = 0 \iff x = -1 \)

so \(\{y''\} = \{-1, 3\} \)

so now we can check the signs.

\(\rightarrow \) there are no critical points, so we need only check one sample for \(y' \):

\[y'(0) = 0 + 2(0) + 3 = 3 > 0 \]

hence \(y \) is increasing everywhere.

\(\rightarrow \) there is one possible inflection:

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y''(x))</th>
<th>sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>-2</td>
<td>-</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

hence \(-1 \) reflects from concave \(\downarrow \) to concave \(\uparrow \)
Finally,

\[\lim_{x \to \infty} y(x) = +\infty \quad \text{and} \quad \lim_{x \to -\infty} y(x) = -\infty, \]

hence there are no asymptotes.

Now we collect this into one graph:

Inflection point at \((-1, -\frac{4}{3})\)
$y = \sin(x) + \frac{1}{2} x \quad \text{over } [0, 2\pi]$

- $\text{dom}(y) = [0, 2\pi]$ (defined everywhere on region)

- $\mathbb{Z}(y) : \sin(x) = -\frac{1}{2} x$; clearly true for $x = 0$.

Now suppose $x \neq 0$;

Then $\frac{\sin(x)}{x} = -\frac{1}{2}$; hence this can only occur in $[\pi, 2\pi]$.

There $-1 \leq \sin(x) \leq 0$

$\Rightarrow -\frac{1}{x} \leq \frac{\sin(x)}{x} \leq 0$

but $-\frac{1}{2} \leq -\frac{1}{x}$ for all $x \in [\pi, 2\pi]$, hence there is no such x.

hence $\mathbb{Z}(y) = \{0\}$
\[y' = \cos(x) + \frac{1}{2} \]

Clearly \(\text{dom}(y') = [0, 2\pi]\)

Now if \(y' = 0\) then \(\cos(x) = -\frac{1}{2}\), which occurs only at \(x = \frac{4\pi}{3}\) and \(x = \frac{2\pi}{3}\) in \([0, 2\pi]\).

So \(\mathcal{Z}(y') = \left\{ \frac{2\pi}{3}, \frac{4\pi}{3} \right\}\)

\[y'' = -\sin(x) \]

Clearly again \(\text{dom}(y'') = [0, 2\pi]\)

and \(\mathcal{Z}(y'') = \{0, \pi, 2\pi\}\)
Now we'll look at the sign charts

Extrema

<table>
<thead>
<tr>
<th>x</th>
<th>$f'(x)$</th>
<th>Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$1 + \frac{1}{2} > 0$</td>
<td>+</td>
</tr>
<tr>
<td>$\frac{2\pi}{3}$</td>
<td>0</td>
<td>CP</td>
</tr>
<tr>
<td>$\frac{\pi}{2}$</td>
<td>$-1 + \frac{1}{2} < 0$</td>
<td>-</td>
</tr>
<tr>
<td>$\frac{4\pi}{3}$</td>
<td>0</td>
<td>CP</td>
</tr>
<tr>
<td>2π</td>
<td>$1 + \frac{1}{2} > 0$</td>
<td>+</td>
</tr>
</tbody>
</table>

Inflection

<table>
<thead>
<tr>
<th>x</th>
<th>$f''(x)$</th>
<th>Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{\pi}{2}$</td>
<td>$\frac{\sqrt{2}}{2} > 0$</td>
<td>+</td>
</tr>
<tr>
<td>$\frac{\pi}{2}$</td>
<td>0</td>
<td>PI</td>
</tr>
<tr>
<td>$\frac{3\pi}{2}$</td>
<td>$-\frac{\sqrt{2}}{2} < 0$</td>
<td>-</td>
</tr>
</tbody>
</table>

Remark: note we don't check the endpoints since inflection can only occur across a point which is contained in an open interval also contained in the domain.
Now we collect the information in a graph of $y = \sin(x) + \frac{1}{2}x$.
\[y = \frac{x-2}{x-3} \]

- \(\text{dom}(y) = \{ x \in \mathbb{R} \mid x \neq 3 \} \)
- \(\mathcal{Z}(y) = \{ 2 \} \)

\[y'(x) = \frac{(1)(x-3) - (x-2)(1)}{(x-3)^2} = \frac{x-3-x+2}{(x-3)^2} = \frac{-1}{(x-3)^2} \]

- \(\text{dom}(y') = \{ x \in \mathbb{R} \mid x \neq 3 \} \)
- \(\mathcal{Z}(y') = \{ \} \)

\[y''(x) = 2(x-3)^{-3} = \frac{2}{(x-3)^3} \]

- \(\text{dom}(y'') = \{ x \in \mathbb{R} \mid x \neq 3 \} \)
- \(\mathcal{Z}(y'') = \{ \} \)

\[\Rightarrow \text{one possible inflection at } x = 3 \]
Now consider the sign charts

<table>
<thead>
<tr>
<th>x</th>
<th>$y'(x)$</th>
<th>sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$-\frac{1}{9}$</td>
<td>-</td>
</tr>
</tbody>
</table>

so y is decreasing everywhere.

And:

<table>
<thead>
<tr>
<th>x</th>
<th>$y''(x)$</th>
<th>sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\frac{2}{x^2} < 0$</td>
<td>(−)</td>
</tr>
<tr>
<td>3</td>
<td>undefined</td>
<td>(±)</td>
</tr>
<tr>
<td>4</td>
<td>$2 > 0$</td>
<td>(+)</td>
</tr>
</tbody>
</table>

hence there is an inflexion across $x = 3$.

Finally, we consider the asymptotes:

\[
\lim_{x \to 3^+} y(x) = +\infty \quad \lim_{x \to +\infty} y(x) = 1 \\
\lim_{x \to 3^-} y(x) = -\infty \quad \lim_{x \to -\infty} y(x) = 1
\]
Now we collect this info into our graph:

\[y = \frac{x - 2}{x - 3} \]
(62) \[y = \frac{x}{x^2 - 9} \]

Clearly \(y \) is defined only when \(x^2 - 9 \neq 0 \) which happens when \(x^2 - 9 = 0 \)

\[(x-3)(x+3) \]

hence \(\text{dom}(y) = \{ x \in \mathbb{R} \mid x \neq 3, -3 \} \)

and \(\mathcal{Z}(y) = \{ 0 \} \) is clear.

\[y' = \frac{(1)(x^2 - 9) - (x)(2x)}{(x^2 - 9)^2} = \frac{x^2 - 9 - 2x^2}{(x^2 - 9)^2} = \frac{-x^2 + 9}{(x^2 - 9)^2} \]

Now \(\text{dom}(y') = \{ x \in \mathbb{R} \mid x \neq 3, -3 \} \)

and \(\mathcal{Z}(y') = \{ 0 \} \) since \(x^2 + 9 \neq 0 \) for all real \(x \).
\[y'' = \frac{-2x(x^2-9)^2 + 4x(x^2+9)(x^2-9)}{(x^2-9)^4} \]

\[= \frac{-2x(x^2-9)^2 + 4x(x^2+9)(x^2-9)}{(x^2-9)^4} \]

\[= \frac{2x((-x^2-9) + (x^2+9))}{(x^2-9)^3} \]

\[= \frac{2x(18)}{(x^2-9)^3} = \frac{36x}{(x^2-9)^3} \]

So then

\[\text{dom}(y'') = \{ x \in \mathbb{R} \mid x \neq 3, -3 \} \]

and

\[\mathbb{Z}(y'') = \{ 0, 3 \} \]
Now check the signs:

\[
\begin{array}{c|c|c}
 x & y'(x) & \text{sign} \\
 \hline
 0 & -\frac{9}{92} & \Theta \\
\end{array}
\]

So \(y \) decreases everywhere.

\[
\begin{array}{c|c|c}
 x & y''(x) & \text{sign} \\
 \hline
 -4 & -\frac{4(26)}{(16-9)^3} < 0 & \Theta \\
 -3 & 0 & \rho_+ \\
 -1 & \frac{36}{(26)^3} > 0 & \Theta \\
 0 & 0 & \rho_+ \\
 1 & \frac{36}{(28)^3} < 0 & \Theta \\
 3 & 0 & \rho_+ \\
 4 & \frac{36(4)}{(16-9)^3} > 0 & \Theta \\
\end{array}
\]

Hence \(y \) has inflection across \(x = -3, 0, \text{ and } 3 \).
Lastly we check the asymptotes:

\[\lim_{x \to 3^-} y(x) = -\infty \quad \text{vertical} \]
\[\lim_{x \to 3^+} y(x) = +\infty \]

\[\lim_{x \to \pm\infty} y(x) = 0 \quad \text{horizontal} \]

Now we can graph!
\[y = \frac{x}{x^2 + 1} \]

- Clearly \(x^2 + 1 \geq 1 \), so \(y \) is defined everywhere \(\Rightarrow \text{dom}(y) = \mathbb{R} \)
 and \(\text{dom}(y) = \{0\} \)

\[y'(x) = \frac{1}{(x^2 + 1)^{3/2}} \]

\(\Rightarrow \text{dom}(y') = \mathbb{R} \)
 \(\Rightarrow \text{dom}(y') = \{7\} \)

\[y''(x) = \frac{-3x}{(x^2 + 1)^{5/2}} \]

\(\Rightarrow \text{dom}(y'') = \mathbb{R} \)
 \(\Rightarrow \text{dom}(y'') = \{30\} \)

Now we check the signs:

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y'(x))</th>
<th>sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

so \(y \) increases everywhere.
\begin{align*}
\begin{array}{|c|c|c|}
\hline
x & y''(x) & \text{Sign} \\
\hline
-1 & \frac{3}{2^{3/2}} > 0 & \bigoplus \\
0 & 0 & (\text{PT}) \\
1 & \frac{-3}{2^{3/2}} < 0 & \bigotimes \\
\hline
\end{array}
\end{align*}

hence an inflection from concave up to concave down at \(x = 0 \).

Finally, the asymptotes:

\begin{align*}
\lim_{x \to \infty} \frac{x}{\sqrt{x^2 + 1}} & \rightarrow \sqrt{\lim_{x \to \infty} \frac{x^2}{x^2 + 1}} = \sqrt{1} = 1 \\
\lim_{x \to -\infty} \frac{x}{\sqrt{x^2 + 1}} & \rightarrow -\sqrt{\lim_{x \to -\infty} \frac{x^2}{x^2 + 1}} = -\sqrt{1} = -1
\end{align*}
and the graph: