4) **Sequences**

- A sequence \(\{a_n\} \) is an ordered list of numbers \(\{a_0, a_1, a_2, a_3, \ldots\} \).

- (The index set can start with \(n = 1 \)).

- Often sequences are given as a **formula**

 \[a_n = \frac{n}{n^3 + 1} \]

Examples

1. \(a_n = n \)
2. \(b_n = \frac{n}{n^3 + 1} \)
3. \(c_n = \cos(\pi n) \)
4. \(g_n = \left(\frac{1}{2}\right)^n \) (Geometric sequence)

L → These are called the **general term** of the sequence.
We can write an sequences' first few terms:

1. \(\{a_n\} = \{0, 1, 2, 3, 4, \ldots \} \)
2. \(\{b_n\} = \{0, \frac{1}{2}, \frac{2}{9}, \frac{3}{28}, \ldots \} \)
3. \(\{c_n\} = \{-1, 1, -1, 1, -1, \ldots \} \)
4. \(\{g_n\} = \{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots \} \)

The sizes of each biirected rectangle slalum, \(\sqrt{1} \) square area = \(\frac{1}{2} \).
Like real functions, sequences have limits:

\[
\lim_{n \to \infty} a_n = \text{the number approached by } a_n \text{ as } n \text{ gets very large}
\]

- When \(\lim_{n \to \infty} a_n \) is finite, \(\{a_n\} \) is called **convergent**.
- We can use what we know about functions to evaluate limits of sequences:

1. If \(a_n = f(n) \) and \(\lim_{x \to \infty} f(x) \) exist,

 \[
 \lim_{n \to \infty} a_n = \lim_{x \to \infty} f(x)
 \]

2. If \(f \) is continuous,

 \[
 \lim_{n \to \infty} f(a_n) = f\left(\lim_{n \to \infty} a_n\right)
 \]
The limit laws for functions also apply to sequences:

\[
\lim_{n \to \infty} a_n = L, \quad \lim_{n \to \infty} b_n = M
\]

Then:
1. \(\lim_{n \to \infty} (a_n \pm b_n) = L \pm M \)
2. \(\lim_{n \to \infty} a_n b_n = LM \)
3. \(\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{L}{M} \) if \(M \neq 0 \)
4. \(\lim_{n \to \infty} c a_n = cL \) for any constant \(c \)
5. **Squeeze theorem**

 If \(a_n \leq b_n \leq c_n \) for all \(n > M \)

 for some \(M \), then

 \[
 \lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n \leq \lim_{n \to \infty} c_n
 \]

 and, in particular, if \(\lim_{n \to \infty} a_n = L = \lim_{n \to \infty} c_n \)

 \(\lim_{n \to \infty} b_n = L \)
Examples:

1. \(\lim_{n \to \infty} 10^{-\frac{1}{n}} = 10^{\lim_{n \to \infty} -\frac{1}{n}} \) since the function \(10^x \) is continuous.

 Now, we know \(\lim_{n \to \infty} \frac{1}{n} = 0 \), hence

 \[\lim_{n \to \infty} 10^{-\frac{1}{n}} = 10^0 = 1 \]

2. Consider the Cauchy limit \(\lim_{x \to \infty} \frac{x}{\sqrt{x^3 + 1}} \)

 and note that it approaches the indeterminate form \(\frac{\infty}{\infty} \), so we \(\rightarrow \)
We will apply L'Hopital's rule.

First, however, we will use some intuition: since the degree of the bottom is 3/2 and the top is 1, we will assume the limit exists and is

$$\lim_{x \to \infty} \frac{x}{\sqrt{x^3 + 1}} = \text{L}$$

Now apply continuous function $f(x) = x^2$ to both sides:

$$\lim_{x \to \infty} \frac{x^2}{x^3 + 1} = \text{L}^2$$

Now we can see that the left side $\text{L} = 0$, hence $\text{L}^2 = 0$

Therefore,

$$\lim_{x \to \infty} \frac{x}{\sqrt{x^3 + 1}} = 0$$
Two important classes of sequences are bounded and monotonic sequences.

1. Definition: \(\{a_n\} \) is bounded
 - From above if there is some \(M \) so that \(a_n \leq M \) for all \(n \).
 - From below if \(a_n \geq M \) for all \(n \).

2. Definition: \(\{a_n\} \) is monotonic if it is
 - Increasing: \(a_n < a_{n+1} \) for all \(n \)
 - Decreasing: \(a_n > a_{n+1} \) for all \(n \)
Theorem
Convergent sequences are bounded

Theorem
Bounded monotonic sequences are convergent

Example:
\(a_n = 2^{1/n} \)

Consider \(a_{n+1} = 2^{\frac{1}{n+1}} \leq 2^{\frac{1}{n}} = a_n \)

Hence \(\{a_n\} \) is decreasing, and we know \(2^{1/n} > 0 \), hence bounded below.

So \(\{a_n\} \) is convergent.
Theorem (Geometric Sequence)

\[
\lim_{n \to \infty} r a^n = \begin{cases}
 \text{divergent for } a \leq 1 \\
 0 & \text{for } -1 < a < 1 \\
 1 & \text{for } a = 1 \\
 +\infty & \text{for } a > 1
\end{cases}
\]

Examples Cont'd

4. \(P_n = \frac{2^{n+1}}{3^{n-1}} \)

See that \(P_n = \frac{2^{n+1}}{3^{n-1}} = \frac{2^n(2)}{3^{n}(3^{-1})} = 6 \left(\frac{2}{3}\right)^n \), hence

\[
\lim_{n \to \infty} P_n = 0 \quad \text{since } -1 < \frac{2}{3} < 1
\]