Useful integrals or formulae:
\[
\begin{align*}
\int (ax + b)^n \, dx &= \frac{1}{a} \cdot \frac{(ax + b)^{n+1}}{n+1} + C, \\
\int e^{ax+b} \, dx &= \frac{1}{a} \cdot e^{ax+b} + C, \\
\int \sin(ax + b) \, dx &= -\frac{1}{a} \cdot \cos(ax + b) + C, \\
\int \cos(ax + b) \, dx &= \frac{1}{a} \cdot \sin(ax + b) + C, \\
\int \frac{1}{ax + b} \, dx &= \frac{1}{a} \cdot \ln |ax + b| + C, \\
\int \frac{1}{\sqrt{1-x^2}} \, dx &= \sin^{-1} x + C, \\
\int \frac{1}{1+x^2} \, dx &= \tan^{-1} x + C, \\
\int \frac{1}{\sqrt{1+x^2}} \, dx &= \sinh^{-1} x + C,
\end{align*}
\]

Chain Rule: \[\frac{df}{dx} = \frac{df}{du} \cdot \frac{du}{dx}, \]

Product Rule: \[\frac{d(u \cdot v)}{dx} = \frac{du}{dx} \cdot v + u \cdot \frac{dv}{dx}, \]

\[A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \] together with \(ad - bc \neq 0 \) implies \(A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \).

The first order Ordinary Differential Equations are of the form \(\frac{dy}{dt} = f(y, t) \). In particular,

- if \(\frac{dy}{dt} = g(y)h(t) \), it is called a **separable** equation. To solve it, separate the two variables, and take integrals on both sides:
 \[\frac{1}{g(y)} \, dy = h(t) \, dt \rightarrow \int \frac{1}{g(y)} \, dy = \int h(t) \, dt + C. \]

- if \(\frac{dy}{dt} + p(t)y = g(t) \), it is called a **linear** equation. To solve it, multiply both sides by an integrating factor \(\mu(t) \), which can be found by \(\mu = e^{\int p(t) \, dt} \), then the equation becomes:
 \[\mu y' + \mu p(t)y = \mu g(t) \rightarrow (\mu y)' = \mu g(t) \rightarrow \mu y = \int \mu g(t) \, dt + C \rightarrow y = \frac{1}{\mu} \left(\int \mu g(t) \, dt + C \right) \]

- if \(M(x, y) + N(x, y) y' = 0 \), and \(M_y(x, y) = N_x(x, y) \), it is called an **exact** equation. To solve it, set up a system of partial differential equations:
 \[\phi_x(x, y) = M(x, y), \quad \phi_y(x, y) = N(x, y) \]
and solve for the **potential** function \(\phi \). Then the solution is \(\phi(x, y) = C \).
The second order linear, homogeneous, constant-coefficient ODEs are of form

\[ay'' + by' + cy = 0, \]

which can be solved by considering the characteristic equation

\[ar^2 + br + c = 0. \]

- If the characteristic equation has two distinct real roots \(r_1, r_2 \), then the ODE has two independent solutions \(y_1 = e^{r_1 t}, y_2 = e^{r_2 t} \);
- If the characteristic equation has two complex roots \(r_{1,2} = \lambda \pm i\mu \), then the ODE has two independent solutions \(y_1 = e^{\lambda t} \cos(\mu t), y_2 = e^{\lambda t} \sin(\mu t) \);
- If the characteristic equation has two equal roots \(r_1 = r_2 = -b/(2a) \), then the ODE has two independent solutions \(y_1 = e^{r_1 t}, y_2 = te^{r_1 t} \);

and the general solution is of the form \(y = c_1 y_1 + c_2 y_2 \).

The second order linear, nonhomogeneous, ODEs are of form

\[y'' + p(t)y' + q(t)y = g(t). \]

They can be solved using:

- **Undetermined Coefficient Method:** Solve the corresponding homogeneous equation for two independent solutions \(y_1(t) \) and \(y_2(t) \). Guess a particular solution \(y_p(t) \) according to \(g(t) \). Insert \(y_p(t) \) back into the nonhomogeneous ODE, and get linear equations on the undetermined coefficients. Solve for these coefficients. And the general solution is

\[y(t) = c_1 y_1(t) + c_2 y_2(t) + y_p(t). \]

- **Variation of Parameters Method:** A particular solution is given by the following formula:

\[y_p(t) = -y_1 \int \frac{y_2(t)g(t)}{W(y_1, y_2)} \, dt + y_2 \int \frac{y_1(t)g(t)}{W(y_1, y_2)} \, dt, \]

where \(W(y_1, y_2) = y_1 y_2' - y_2 y_1' \) is the Wronskian, and the general solution is given by

\[y(t) = c_1 y_1(t) + c_2 y_2(t) + y_p(t). \]
For a 2-by-2 system of ODEs
\[x' = Ax, \]
where \(A \) is an 2-by-2 matrix, and \(x \) is a 2-by-1 vector, there are 2 linearly independent solutions \(u_1, u_2 \). If their Wonskian is nonzero, that is,
\[W(u_1, u_2) = \det(u_1, u_2) \neq 0, \]
then these solutions form a fundamental set of solutions, that is, \(u_1, u_2 \) are linearly independent. Then the general solution is
\[x(t) = c_1 u_1 + c_2 u_2. \]
For initial value problems
\[x' = Ax, \quad \text{with} \quad x(t = 0) = x_0, \]
you need to determine \(c_1 \) and \(c_2 \) by \(c_1 u_1(0) + c_2 u_2(0) = x_0 \), i.e., you need to solve the linear system of equations
\[(u_1(0), u_2(0)) \cdot \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}. \]

To solve for a 2-by-2 homogeneous, linear constant coefficient system of ODEs
\[x' = Ax, \]
first solve for the characteristic equation \(\det(A - \lambda I) = 0 \) to get two eigenvalues.

- if the two eigenvalues \(\lambda_1, \lambda_2 \) are real and distinct, then you get a stable node (if \(\lambda_1 < 0 \) and \(\lambda_2 < 0 \)), or an unstable node (if \(\lambda_1 > 0 \) and \(\lambda_2 > 0 \), or a saddle point (if \(\lambda_1 \lambda_2 < 0 \)). The general solution is given by
\[x = c_1 u_1 e^{\lambda_1 t} + c_2 u_2 e^{\lambda_2 t}, \]
where \(u_1 \) and \(u_2 \) are two linearly independent eigenvectors of \(A \) corresponding to \(\lambda_1 \) and \(\lambda_2 \), i.e., \((A - \lambda_1 I) \cdot u_1 = 0 \) and \((A - \lambda_2 I) \cdot u_2 = 0 \).

- if the two eigenvalues are complex, that is \(\lambda = \alpha \pm i\beta \), then you get a stable spiral (if \(\alpha < 0 \)) or an unstable spiral (if \(\alpha > 0 \)). To find the solution, solve for the eigenvector \(u_1 = v_1 + iv_2 \) corresponding to \(\lambda_1 = \alpha + i\beta \). Then the second eigenvector corresponding to \(\lambda_2 = \alpha - i\beta \) is \(u_2 = v_1 - iv_2 \). And the general solution is given by
\[x = c_1 (v_1 \cos \beta t - v_2 \sin \beta t) e^{\alpha t} + c_2 (v_1 \sin \beta t + v_2 \cos \beta t) e^{\alpha t}. \]

- if the two eigenvalues are repeated, i.e., \(\lambda_1 = \lambda_2 = \lambda \), there are two possibilities:
- **A stable (if \(\lambda < 0 \)) or **unstable (if \(\lambda > 0 \)) node**: if you can obtain two linearly independent eigenvectors, \(u_1 \) and \(u_2 \), then the general solution is given by
 \[
 x = c_1 u_1 e^{\lambda t} + c_2 u_2 e^{\lambda t}.
 \]

- **A stable (if \(\lambda < 0 \)) or **unstable (if \(\lambda > 0 \)) improper node**: if you can only obtain one linearly independent eigenvector, \(u \), then you need to find a generalized eigenvector \(v \), such that \((A - \lambda I)v = u\). And the general solution is
 \[
 x = c_1 u e^{\lambda t} + c_2 (v + ut) e^{\lambda t}.
 \]

To solve for 2-by-2 nonhomogeneous, linear constant coefficient systems of ODEs, i.e.,
\[
x' = Ax + g(t),
\]
there are four methods, but we use only two of them:

- **Diagonalization Method**: If there are two distinct eigenvalues \(\lambda_1 \) and \(\lambda_2 \), then you can find two linearly independent eigenvectors \(u_1 \) and \(u_2 \).
 - Let \(P = [u_1, u_2] \), find \(P^{-1} \).
 - Let \(D = P^{-1} \cdot A \cdot P \), in fact, \(D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \).
 - Let \(x = P \cdot y \), then we have a new system of ODEs on \(y \)
 \[
 y' = Dy + h(t), \quad \text{with} \quad h(t) = P^{-1} \cdot g(t)
 \]
 - Now solve for the decoupled system \(y_1' = \lambda_1 y_1 + h_1(t) \) and \(y_2' = \lambda_2 y_2 + h_2(t) \) to get \(y \).
 - To solve for \(y_1 \) and \(y_2 \), you can use the formula for first order linear ODEs.
 - Compute \(x \) using \(x = P \cdot y \). Don’t forget to include the two constants \(c_1 \) and \(c_2 \).

- **Undetermined Coefficient Method**: This method is similar to the undetermined coefficient method for 2nd order ODEs.
 - You solve for the homogeneous system first, obtain the solution \(x_h \),
 - then you take a guess on the particular solution \(x_p \). The guess \(x_p \) may be a linear combination (that is, an addition) of coefficient vectors times a function such as \(t, e^{rt} \) or \(\sin \beta t, \cos \beta t \), etc.
 - Insert \(x_p \) back into the equation \(x' = Ax + g(t) \), and get a group of linear equations.
 - Solve for these linear equations, get the coefficient vectors, and put them back to the \(x_p \).
 - The general solution is \(x = x_h + x_p \).

Page 4 of 5
Table 1: Elementary Laplace Transforms

<table>
<thead>
<tr>
<th>$f(t)$</th>
<th>$F(s) = \mathcal{L}{f(t)}$</th>
<th>$F(s) = \mathcal{L}^{-1}{F(s)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 1</td>
<td>$\frac{1}{s}$, $s > 0$</td>
<td>1</td>
</tr>
<tr>
<td>2. e^{at}</td>
<td>$\frac{1}{s-a}$, $s > a$</td>
<td>e^{at}</td>
</tr>
<tr>
<td>3. t^n, n positive integer</td>
<td>$\frac{n!}{s^{n+1}}$, $s > 0$</td>
<td>t^n</td>
</tr>
<tr>
<td>4. t^p, $p > -1$</td>
<td>$\frac{\Gamma(p + 1)}{s^{p+1}}$, $s > 0$</td>
<td>t^p</td>
</tr>
<tr>
<td>5. $\sin at$</td>
<td>$\frac{a}{s^2 + a^2}$, $s > 0$</td>
<td>$\sin at$</td>
</tr>
<tr>
<td>6. $\cos at$</td>
<td>$\frac{s}{s^2 + a^2}$, $s > 0$</td>
<td>$\cos at$</td>
</tr>
<tr>
<td>7. $\sinh at$</td>
<td>$\frac{a}{s^2 - a^2}$, $s ></td>
<td>a</td>
</tr>
<tr>
<td>8. $\cosh at$</td>
<td>$\frac{s}{s^2 - a^2}$, $s ></td>
<td>a</td>
</tr>
<tr>
<td>9. $e^{at} \sin bt$</td>
<td>$\frac{b}{(s-a)^2 + b^2}$, $s > a$</td>
<td>$e^{at} \sin bt$</td>
</tr>
<tr>
<td>10. $e^{at} \cos bt$</td>
<td>$\frac{s-a}{(s-a)^2 + b^2}$, $s > a$</td>
<td>$e^{at} \cos bt$</td>
</tr>
<tr>
<td>11. t^ne^{at}, n positive integer</td>
<td>$\frac{n!}{(s-a)^{n+1}}$, $s > a$</td>
<td>t^ne^{at}</td>
</tr>
<tr>
<td>12. $u_c(t)$</td>
<td>e^{-cs}, $s > 0$</td>
<td>$u_c(t)$</td>
</tr>
<tr>
<td>13. $u_c(t)f(t-c)$</td>
<td>$e^{-cs}F(s)$</td>
<td>$u_c(t)f(t-c)$</td>
</tr>
<tr>
<td>14. $e^{ct}f(t)$</td>
<td>$F(s-c)$</td>
<td>$e^{ct}f(t)$</td>
</tr>
<tr>
<td>15. $f(ct)$</td>
<td>$\frac{1}{c}F\left(\frac{s}{c}\right)$, $c > 0$</td>
<td>$f(ct)$</td>
</tr>
<tr>
<td>16. $\delta(t-c)$</td>
<td>e^{-cs}</td>
<td>$\delta(t-c)$</td>
</tr>
<tr>
<td>17. $f^{(n)}(t)$</td>
<td>$s^nF(s) - s^{n-1}f(0) - \cdots - f^{(n-1)}(0)$</td>
<td>$f^{(n)}(t)$</td>
</tr>
</tbody>
</table>