1. For the following problem you may use that 587 and 1376 are primes. Prove or disprove
 (a) 587 is a square mod 1367,
 (b) 585 is a square mod 1367.

2. Consider the elliptic curve $E : y^2 = x^3 + x - 1$ and the points $P = (1, 1)$ and $Q = (2, -3)$
on E.
 (a) Compute $P + Q$ with respect to the group law on E.
 (b) Prove or disprove that P is a torsion point on E (you may use that $2P = Q$).
 (c) Determine the primes p (if any) for which P has order 6 for the given elliptic curveE mod p. (Hint: What would be the y-coordinate of $3P$ in this case?)

3. (a) Compute the number $y = y(x)$ as a function of x whose continued fraction expansion is $[1, 2, 3, x]$.
 (b) Find the number whose continued fraction expansion is $[1, 2, 3]$.
 (c) Find the continued fraction expansion of $\frac{11x + 4}{3x + 1}$. (If confused, find expansion for $26/7$ for partial credit).

5. (a) Find conditions for primes q for which 5 is a quadratic residue.
 (b) Let $p_1, p_2, ... p_k$ be primes $\equiv -1 \mod 5$. Find conditions for primes q which divide
 $N = (2p_1p_2 ... p_k)^2 - 5$.
 (c) Show that there are infinitely primes p of the form $p = 5n - 1$. (Hint: Assume
 $p_1, p_2, ... p_k$ are all the primes $\equiv -1 \mod 5$. Consider the primes q which divide
 $N = (2p_1p_2 ... p_k)^2 - 5$.)