6.2.2) \[\dot{x} = y \quad \dot{y} = -x + (1 - x^2 - y^2)y \]

a) It's clear that both \(\dot{x} \) and \(\dot{y} \) are continuous on the open disk \(x^2 + y^2 < 1 \) as they're polynomials and so are their partial derivatives \(\dot{x} \) and \(\dot{y} \) are continuous as well since they're polynomials. So the uniqueness and existence theorem is satisfied. [1 point]

b) Using \(x(t) = \sin t \) and \(y(t) = \cos t \), show that \(\dot{x}(t) = \cos t \) and \(\dot{y}(t) = -\sin t \).

\[\dot{x}(t) = y(t) = \cos t \quad \text{and} \quad \dot{y}(t) = -x + (1 - x^2 - y^2)y \]

\[\implies \dot{y}(t) = -\sin t + (1 - \sin^2 t - \cos^2 t) \cos t \]

\[= -\sin t + (1 - \left(\cos^2 t + \sin^2 t\right)) \cos t = -\sin t \] [1 point]

c) From b) since \(x(t) = \sin t \) and \(y(t) = \cos t \) are solutions we know this forms the equation for a closed orbit \((x(t)^2 + y(t)^2 = 1 = \text{const.} \) which encloses the point \((\frac{1}{2}, 0)\). From the uniqueness theorem trajectories cannot intersect and so if \(x(0) = \frac{1}{2} \) and \(y(0) = 0 \) it follows the trajectory must be somewhere \(x^2 + y^2 < 1 \). [1 point]
6.3.2) \(\dot{x} = \sin y \quad \dot{y} = x - x^3 \)

Find fixed points:
\[\dot{x} = 0 = \sin y \Rightarrow y = n\pi \quad \text{where } n \in \mathbb{Z} \]
\[\dot{y} = 0 = x - x^3 \Rightarrow x = 0, \pm 1 \]
[1 point for fixed points]

Linearize around the fixed points using the Jacobian:

\[A(x, y) = \begin{bmatrix} 0 & \cos y \\ 1 - 3x^2 & 0 \end{bmatrix} \quad A(0, 0) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \]

\[A(\pm 1, 0) = \begin{bmatrix} 0 & 1 \\ -2 & 0 \end{bmatrix} \quad A(0, \pi) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \cdot A(\pm 1, \pi) = \begin{bmatrix} 0 & -1 \\ -2 & 0 \end{bmatrix} \]

(Almost y = 0, y = \pi are sufficient as further y values are repetitive)

Classify fixed points:

For
\((0, 0) \quad \lambda = \pm 1 \Rightarrow \text{saddle point} \quad \pm \text{vector}\)

\((\pm 1, 0) \quad \lambda = \pm \sqrt{2} i \Rightarrow \text{center} \quad \pm i \)

\((0, \pi) \quad \lambda = \pm i \Rightarrow \text{center} \quad \pm \text{i vector}\)

\((\pm 1, \pi) \quad \lambda = \pm \sqrt{2} \Rightarrow \text{saddle point} \quad \pm \frac{\sqrt{2}}{2}, \pm \frac{\sqrt{2}}{2} \)

\((\pm 1, -\pi) \quad \lambda = \pm \sqrt{2} \Rightarrow \text{saddle} \quad \pm \frac{\sqrt{2}}{2}, \pm \frac{i}{2} \)

Nullclines:
- horizontal: \(\dot{y} = 0 \Rightarrow x = 0, \pm 1 \)
- vertical: \(\dot{x} = 0 \Rightarrow y = n\pi \)
Using all of the information we draw the phase portrait.

Total: 7 points
6.5.1) \[\dot{x} = x^3 - x \]

a) \[\dot{x} = y, \quad \dot{y} = x^2 - x \]

\[\dot{x} = 0 \Rightarrow y = 0 \quad \dot{y} = 0 = x^3 - x \Rightarrow x = 0, \pm 1 \]

Linearize around fixed points and find eigenvalues and eigenvectors.

\[A(x, y) = \begin{bmatrix} 0 & 1 \\ 3x^2 & 0 \end{bmatrix} \quad A(0, 0) = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \quad A \pm 1 \pm 0 = \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix} \]

\[\lambda = \pm i \quad \text{Center} \]
\[\lambda = \pm \sqrt{2} \quad \text{Saddle point} \]
\[(\sqrt{2}, \sqrt{2}) \]

[1 point for each classification]

b) One approach to this is to consider the system as a force and potential system with \(F(x) = \dot{x} = -\frac{dv}{dx} \)

\[\Rightarrow V(x) = \int x^2 - x^4 \, dx = \frac{x^3}{2} - \frac{x^5}{4} \]

Using the equation for total energy \(E = \frac{1}{2} m \dot{x}^2 + V(x) \)

\[\Rightarrow E = \frac{1}{2} y^2 + \frac{1}{2} x^2 - \frac{1}{4} x^4 \]

is a conserved quantity (can check by taking time derivatives)

[1 point for correct quantity]
nullclines: \[\text{vert} - y = 0 \]
\[\text{horiz} - x = 0, x = \pm 1 \]

[1 point for drawing all fixed points and 1 point for approximate trajectories]

Total: 5 points