For Dulac's criterion, we need to calculate $\nabla \cdot (g\dot{x})$ and check it doesn't change sign. Here $\dot{x} = (N_1, N_2)$

$$\nabla \cdot (g\dot{x}) = \frac{\partial}{\partial N_1} (gN_1) + \frac{\partial}{\partial N_2} (gN_2) = \frac{\partial}{\partial N_1} \left(\frac{N_1}{N_1} (1 - \frac{N_1}{K_1}) - b_1 \right) + \frac{\partial}{\partial N_2} \left(\frac{N_2}{N_2} (1 - \frac{N_2}{K_2}) - b_2 \right)$$

$$= -\frac{N_1}{N_2 K_1} - \frac{N_2}{N_1 K_2} < 0 \text{ for } N_1, N_2 > 0 \text{ (since it is given that } \tau_1, \tau_2, K_1, K_2 > 0)$$

So for $N_1, N_2 > 0$, there are no periodic orbits.

7.3.3 \[\dot{x} = x - y - x^3 \quad \dot{y} = x + y - y^3 \]

Consider the square $[-2,2] \times [-2,2]$: we claim this is a trapping region. Indeed, on the boundary we get:

- $x = 2 : \dot{x} = -y - 6 < 0$ for $-2 \leq y \leq 2$
- $x = -2 : \dot{x} = -y + 6 > 0$ for $-2 \leq y \leq 2$
- $y = 2 : \dot{y} = x - 6 < 0$ for $-2 \leq x \leq 2$
- $y = -2 : \dot{y} = x + 6 > 0$ for $-2 \leq x \leq 2$

So the vectors point inward on the whole boundary. Hence if we show that the only fixed point, namely $(0,0)$, is a repellor (unstable), we get the existence of a limit cycle using Poincaré-Bendixson Thm. But for $(0,0)$, we have $A = \begin{pmatrix} 1 & 3x \\ 0 & 1 \end{pmatrix}$, so $\tau = A = 2$ and $(0,0)$ is unstable.
\[7.3.4. \begin{align*}
 \dot{x} &= x(1-4x^2-y^2) - \frac{1}{2} y(1+x) \\
 \dot{y} &= y(1-4x^2-y^2) + 2x(1+x)
\end{align*} \]

a) Obviously, the origin is a fixed point. The Jacobian is equal to
\[
A = \begin{pmatrix}
 1 - 4x^2 - y^2 + x(-8x) - \frac{1}{2} y & -2xy - \frac{1}{2} (1+x) \\
 -8xy + 2(1+x) + 2x & 1 - 4x^2 - y^2 + y(-2y)
\end{pmatrix}
\]

\[
= \begin{pmatrix}
 1 & -\frac{1}{2} \\
 2 & 1
\end{pmatrix}
\]

So \(\tau = \Delta = 2 \) and the origin is unstable.

b) Given \(V = (1-4x^2-y^2)^2 \), we get
\[
\dot{V} = 2(1-4x^2-y^2)(-8x\dot{x}+2y\dot{y})
\]

\[
= -4(1-4x^2-y^2)(4x(1-4x^2-y^2) - \frac{1}{2} y(1+x)) + y(y(1-4x^2-y^2) + 2x(1+x))
\]

\[
= -4(1-4x^2-y^2)(1-4x^2-y^2) + 2xy(1+x) + 2y(1+x)
\]

\[
= -4(1-4x^2-y^2)(4x^2+y^2).
\]

We see that \(\dot{V} = 0 \) if \((x, y) = (0, 0)\) or \(-4x^2-y^2 = 0\)
\(\dot{V} < 0 \) otherwise.

So if we are on the ellipse \(4x^2+y^2 = 1 \), \(V \) remains constant. On all other trajectories (except at the fixed point \((0,0)\)) \(V \) strictly decreases. In particular, there are no periodic orbits outside the ellipse and since by (a1 \((0,0)\) is unstable, all other trajectories have to converge to the ellipse \(4x^2+y^2 = 1 \) (since they cannot converge to \((0,0)\)).