1. Calculate the character $\chi_{[3,2,1]}((123)(45)(6))$ of the symmetric group S_6.

2. Let G be the group of order 21 given by generators s and t with relations $t^7 = s^3 = 1$ and $sts^{-1} = t^2$. Calculate $\chi(t)$ and $\chi(s)$ for all simple characters of G (Hint: Consider representations induced from one-dimensional representations of a suitable subgroup). How does CG decompose as a direct sum of simple matrix rings?

3. Let G be a group all of whose characters are integers. Let V be an irreducible representation of G with $\dim V > 1$. Show that there exists a $g \in G$ for which $\chi_V(g) = 0$.

4. Let I be a minimal ideal in an algebra A satisfying $I^2 \neq 0$ (I^2 is the linear span of all elements of the form ab, with $a, b \in I$). Show that there exists an idempotent $p \in A$ such that $I = Ap$. (Hint: For given $b \in I$, consider the map $\rho_b : I \rightarrow I$, $a \in I \mapsto ab$).

5. Let $\epsilon(\pi)$ be the sign of the permutation π and let A_n be the subgroup of S_n defined by $A_n = \{\pi \in S_n, \epsilon(\pi) = 1\}$.
 (a) Show that ϵ is a character of S_n, and, if χ is a character of S_n, then so is $\epsilon \chi$.
 (b) Assume that χ is a simple character of S_n for which $\epsilon \chi = \chi$. Calculate $\chi(\pi)$ for $\pi \in A_n$.
 (c) Determine how the representation of S_n corresponding to χ decomposes if it is restricted to A_n. What would be the dimensions of its subrepresentations?