Additional Exercise: Let L_1 be the x-axis in \mathbb{R}^2, and let L_2 be the line given by the equation $y = x$. Let R_i be the reflection at the line L_i for $i = 1, 2$.

(a) Show that $R_1(x, y) = (x, -y)$ and $R_2(x, y) = (y, x)$. It suffices to draw representative pictures for a point (x, y).

(b) Calculate $R_2R_1(x, y) = R_1(R_2(x, y))$ and $R_1R_2(x, y) = R_1(R_2(x, y))$.

(c) According to what we did in class R_1R_2 and R_2R_1 are rotations. Determine the angle. *(Hint: Calculate the dot product between (x, y) and $R_1R_2(x, y)$).*

(d) Calculate the orders of R_1, R_2, R_1R_2 and R_2R_1. Here the order of the operation T on \mathbb{R}^2 is the smallest power n such that T^n is the identity map.