Please justify all your steps!

1. Calculate the order of $(10,12)$ in $\mathbf{Z}_{12} \oplus \mathbf{Z}_{16}$.
2. (a) Fix a positive integer $n \in \mathbf{N}$. Show that the map $x \mapsto n x \bmod 10$ is a homomorphism from \mathbf{Z}_{10} into itself.
(b) Determine those n for which the map in (a) is an isomorphism (Hint : You only need to consider $0 \leq n<10$).
3. (a) Is the following true: For every positive integer $n \in \mathbf{N}$ there exists a group G of order n. Either give examples for all n, or produce an n for which there is no group with $|G|=n$.
(b) Every group of order p, with p a prime number, is abelian. Why or why not?
(c) Every group of order $2 p$, with p a prime number, is abelian. Why or why not?
(d) There exists a group with 44 elements which contains an element of order 8 . Why or why not?
4. Let G be the set of all 2×2 matrices A with integer entries such that the determinant of A is equal to 1 . Also recall the formula

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

(a) Show that G is a group (you may assume that matrix multiplication is associative).
(b) Fix $n \in \mathbf{N}$. Let $H \subset G$ be the set of matrices $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ such that $a \equiv d \equiv 1$ $\bmod n$, and $c \equiv d \equiv 0 \bmod n$. Show that H is a subgroup of G.
5. Let $G=S_{6}$, the group of all permutations of the integers 1 until 6 . Let H be the subgroup of G of all permutations σ with $\sigma(1)=1$. Moreover, let $\pi=(132)$.
(a) Show for the left coset πH that $\pi H=\left\{\gamma \in S_{n}, \gamma(1)=3\right\}$.
(b) If β is an element in the right coset $H \pi$, what is $\beta(2)$?
(c) Is H a normal subgroup of S_{6} ?
6. Let $G=H \oplus K$ be the external direct product of the groups H and K. Consider the $\operatorname{map} \Phi: G \rightarrow H$ which maps (h, k) to h.
(a) Show that Φ is a homomorphism.
(b) What is the kernel of Φ ?
7. Let $G=\mathbf{Z}_{4} \oplus \mathbf{Z}_{2}$ and let $a=(2,1) \in G$.
(a) What is the order of the factor group $|G /\langle a\rangle|$?
(b) To which group is $G /\langle a\rangle$ isomorphic?
8. Prove or disprove that $U(8)$ is isomorphic to $U(5)$.

