Recall: \(G, H\) groups
\[\Phi: G \rightarrow H \text{ is a homomorphism if } \Phi(ab) = \Phi(a) \Phi(b) \text{ for all } a, b \text{ in } G. \]

Question: Given 2 groups \(G, H\), how many homomorphisms are there, \(\Phi: G \rightarrow H\)?

Examples: Assume \(G\) is cyclic
have seen: in this case \(G \cong \mathbb{Z}\) (if infinite)
or \(G \cong \mathbb{Z}_n\) (if finite)

Crucial observation:
If \(G\) is cyclic with generating element \(a\)
i.e. \(G = \langle a \rangle \Rightarrow \)
any hom. \(\Phi: G \rightarrow H \)
is already uniquely determined if we know \(\Phi(1) \)
indeed any element of \(G \) is of the form \(a^j \)
\[\Phi(a^j) = \Phi(a)^j = \text{determined by } \Phi(a) \]

nom. properties

Example: Determine all homomorphisms from \(G = \mathbb{Z} \)
into \(H \subset \text{Aut} \), \(H = \{ \text{id}, (12)(24), (13)(24), (14)(23) \} \)

Solution: Define for any \(h \in H \) the hom.
\[\Phi_h: 1 \rightarrow h \]
\[\Rightarrow \Phi_h(j) = \Phi_h(1+1+\ldots+1) = \Phi_h(1)^j = h^j \]
(use add. notation) j times
(use mulipl. not. for H)
Φ_n does define a hom.

If $h = \text{id.}$ $\implies \Phi_n(j) = \text{id}$ for all $j \in \mathbb{Z}$

If $\text{ord}(h) = 2$ $\implies \Phi_n(j) = \begin{cases} e & \text{if } j \text{ is even} \\ h & \text{if } j \text{ is odd} \end{cases}$

$\implies \text{ker of } \Phi_n = \begin{cases} \mathbb{Z} & \text{if } h = e \\ \langle 2 \rangle & \text{if } h \neq e \end{cases}$

$\Phi_n(\mathbb{Z}) = \langle h \rangle$

General Fact. There exists exactly one hom. $\Phi_n : \mathbb{Z} \rightarrow H$ for every elem. $h \in H$.

and these are all possible group hom. from \mathbb{Z} to the group H.
(2) Find all hom. from \(\mathbb{Z}_3 \) into \(H \),
\(H \subset A_4 \) as before.

Solution: \(\mathbb{Z}_3 \) is cyclic \(\Rightarrow \) any hom. \(\Phi \) already completely determined by \(\Phi(1) \)

Question: What can we take for \(\Phi(1) \)?

Try \(\Phi(1) = \text{id} \). \(\Rightarrow \Phi(j) = \text{id}^j = \text{id} \) for all \(j \in \mathbb{Z} \)

\(\Rightarrow \Phi(j + k) = \text{id} = \text{id} \circ \text{id} = \Phi(j) \Phi(k) \)

Try \(\Phi(1) = h \neq \text{id} \)

Say \(h = (12)(34) \)

Does this define a homomorphism?

\(\Rightarrow \Phi(2) = h^2 = \text{id} \)
\(\Phi(3) = h^3 = h \)

\(3 \mod 3 = 0 \)
\(\Rightarrow \Phi(3) = \Phi(0) = \text{id} \)

\(\uparrow \)
\[\Rightarrow \text{ no hom. } \Phi : \mathbb{Z}_3 \rightarrow H \text{ possible} \]

with \(\Phi(1) = h \neq \text{id} \)

Remark: Nonexistence of such hom. can also be seen from the fact \(\text{ord } \Phi(g) \nmid \text{ord}(g) \) for any \(g \in G \)

in our example:

\[\text{ord}(1) = 3 \text{ in } \mathbb{Z}_3 \]

\[\text{ord}(h) = 2 \text{ for } h \in H, \ h \neq \text{id} \]

\[\Rightarrow \text{ no hom. } \Phi \text{ which would map 1 to } h. \]

Essentially we have proved the following theorem:
Theorem: Let H be any group, $G = \langle a \rangle$ cyclic.

(a) If $\text{ord}(a) = \infty$ (i.e. $G \cong \mathbb{Z}$)

\[\Rightarrow \text{there exists a hom } \Phi_n : \alpha \rightarrow h \]

for any $h \in H$.

These are all possible homomorphisms $G \rightarrow H$.

(b) If $\text{ord}(a) = n$

\[\Rightarrow \Phi_n : \alpha \rightarrow h \text{ defines a homomorphism } \]

if and only if $\text{ord}(h) | n$.

Example: Find all homomorphisms $\Phi : \mathbb{Z}_6 \rightarrow \mathbb{Z}_9$.

SOL: by theorem, $\Phi(1) = j$ defines a homomorphism.

\[\Rightarrow \text{ord}(j) | \text{ord}(1) = 6 \]

\mathbb{Z}_6
Recall: \(j \in \mathbb{Z}_9 \implies \text{ord}(j) = \frac{9}{\text{gcd}(j,9)} = \begin{cases} 1 & j = 0 \\ 3 & j = 3, 6 \\ 9 & \text{otherwise}. \end{cases} \)

\[\implies \text{ord}(j) \mid 6 \iff j \in \{0, 3, 6\} \]

\(\implies \) have exactly 3 homomorphisms \(\Phi: \mathbb{Z}_6 \to \mathbb{Z}_6 \):

- \(\Phi(k) = 0 \) for all \(k \in \mathbb{Z}_6 \) \(j = 0 \)
- \(\Phi(k) = 3k \mod 9 \) \(j = 3 \)
- \(\Phi(k) = 6k \mod 9 \) \(j = 6 \)
Fundamental Theorem of Finite Abelian Groups

Main result:
as stated in book: \(G \cong \text{direct product of cyclic groups} \)
\[\uparrow \]
\(\text{arbitrary finite abelian group} \)

Alternative statement (better for explicit calculations)

1. If \(|G| = p^a \Rightarrow G \cong \mathbb{Z}_{p^{a_1}} \oplus \mathbb{Z}_{p^{a_2}} \oplus \cdots \oplus \mathbb{Z}_{p^{a_r}} \)
 where \(a_1 + a_2 + \cdots + a_r = a \)

 Def. \((a_1, a_2, \ldots, a_r)\) is a partition of \(a \)
 if \(a_1 \geq a_2 \geq \cdots \geq a_r \geq 0 \) integers
 and \(a_1 + a_2 + \cdots + a_r = a \)

 \(\Rightarrow \) If \(\text{Par}(a) = \# \text{partitions of } a \)
 then there are exactly \(\text{Par}(a) \) nonisom. groups \(G \) of order \(p^a \)
2. If \(|G| = p_1^{a_1} p_2^{a_2} \ldots p_s^{a_s} \),

\[G = G_{p_1} \oplus G_{p_2} \oplus \ldots \oplus G_{p_s} \]

where

\[|G_{p_i}| = p^{a(i)} \]

and there are exactly

\[\text{Par}(a_i) \cdot \text{Par}(a_2) \cdot \ldots \cdot \text{Par}(a_s) \]

nonisom. groups \(G \) with \(|G| = p_1^{a_1} \ldots p_s^{a_s} \).

Example: how many nonisom. abelian groups of order 100?

Solution:

\[100 = 2^2 \cdot 5^2 \]

\[G = G_2 \oplus G_5 \]

\[|G_2| = 2^2 \]

\[|G_5| = 5^2 \]

2 possibilities:

- \(D_4 \) or \(Z_2 \otimes Z_2 \)
- \(Z_{25} \otimes Z_5 \otimes Z_5 \)

2 possibilities.
have $\text{Par}(2)$. $\text{Par}(2) = 2 \cdot 2 = 4$ possibilities.