Last class:

D_4 symmetries of a square group with 8 elements:
4 rotations & 4 reflections.

Similarly, can define the dihedral group D_n:
$= \text{symmetries of a regular } n\text{-gon}$
It has $2n$ elements, n rotations and n reflections.

$n=3$

$n=5$

Symmetries of regular pentagon
Demain: The dihedral groups D_n are not Abelian for $n \geq 3$.

e.g. for $n=4$: check: S reflect in a main diagonal

\[SR_{90} = R_{270} S + R_{90} S \]

true for any dihedral group:

If R is a rotation and S is a reflection then \[SR = R^{-1} S \]
Other examples:

1. $\mathbb{Z}_n = \{0, 1, 2, \ldots, n-1\}$ with addition mod n

2. can also define multiplication mod n.
 Identity element: 1
 Problematic: inverses do not always exist!
 e.g. $0 \cdot a \mod n = 0 \neq 1$ for all integers a

 if $n=4$: also 2 does not have an inverse mod 4
 because $2 \cdot 1 = 2$
 $2 \cdot 2 \mod 4 = 4 \mod 4 = 0$
 $2 \cdot 3 \mod 4 = 6 \mod 4 = 2$
 $4 \cdot 4 \mod 4 = 16 \mod 4 = 0$
Lemma \(\text{let } n > 0 \)

The integer \(a \) has an inverse mod \(n \) \(\iff \) \(\gcd(a, n) = 1 \)

proof

Recall: \(\exists \) integers \(s \) and \(t \) such that

\[\gcd(a, n) = sa + tn \]

\[\implies 1 = \gcd(a, n) = sa + tn \]

\[\implies sa = 1 - tn \]

\[\implies sa \mod n = 1 \]

\[\implies s \text{ is the inverse of } a \mod n \]

\[\implies s \text{ is the inverse of } a \mod n \]

\[\text{i.e. } sa \mod n = 1 \]

\[\implies sa - 1 = \text{multiple of } n \]

\[\implies sa - 1 = tn \text{ for some int. } t \implies sa - tn = 1 \]
\[\Rightarrow \gcd(a, n) = 1. \]

Def. The group \(\mathcal{U}(n) \) is given by
\[\{ r \mid 1 \leq r \leq n, \gcd(r, n) = 1 \} \]
with multiplication mod \(n \).

Check for yourself: This is indeed a group!
(just use the lemma!)

General result:

Theorem \(a, b \in \mathcal{U}(n) \Rightarrow (ab)^{-1} = b^{-1}a^{-1} \)

Proof. By uniqueness of inverse, it suffices to check
\[(ab)(b^{-1}a^{-1}) = e \]
which holds since
\[(ab)(b^{-1}a^{-1}) = a(b b^{-1}) a^{-1} = a e a^{-1} = aa^{-1} = e \]

and \((b^{-1}a^{-1})(ab) = e\).
Ch 3:

Def. The order of a group G, notation $|G|$ is the number of elements in the group. It is either a natural number (finite group) or it is infinity (infinite group).

5. The order of an element $a \in G$, $\text{ord}(a)$, is the smallest positive integer n such that $a^n = e$ or if no such n exists, it is ∞. (book 10.1)
Examples:

@ \left| \text{D}_4 \right| = 8

\left| \mathbb{Z}_n \right| = n = \# \{0, 1, 2, \ldots, n-1\}

\left| \mathbb{Z} \right| = \infty \quad \mathbb{Z} \text{ is an infinite group}

b) \quad R_{90} \leq \text{D}_4

\text{ord} \left(R_{90} \right) = 4

\begin{align*}
R_{90} + \text{id} &= R_0 \\
R_{90}^2 &= R_{180} + \text{id} \\
R_{90}^3 &= R_{270} + \text{id} \\
R_{90}^4 &= R_{360} = \text{id}
\end{align*}

\text{ord} \left(R_{90} \right) = 4
\[G = \mathbb{Z}_6 \]

\[\text{ord}(4) = ? \]

\[4 \mod 6 \neq 0 \]
\[4 + 4 = 8 \mod 6 = 2 \neq 0 \]
\[4 + 4 + 4 = 12 \mod 6 = 0 \]

Result: \[\text{ord}(4) = 3 \text{ in } \mathbb{Z}_6 \]

Remark: For general statements, we usually use multiplicative notation. Sometimes we use additive notation, often for abelian groups, in particular for \(\mathbb{Z}_n \).
Warning: \(a^m = e \) does not necessarily mean \(\text{ord}(a) = m \).

E.g., if \(a^n = e \), then also \(a^{2n} = e \).

We have the following lemma:

Lemma: If \(a^m = e \), then \(\text{ord}(a) \mid m \).

Proof. Let \(\text{ord}(a) = n \) and