Recall: $a \in G$

$$\text{ord}(a) = \begin{cases} \text{smallest positive integer } n \text{ such that } a^n = e \\ \infty \quad \text{if } a^n \neq e \text{ for all } n > 0 \end{cases}$$

$$\langle a \rangle = \text{subgroup generated by } a = \{ a^k \mid k \in \mathbb{Z} \}$$

Lemma

(1) $\text{ord}(a) = |\langle a^k \rangle|$

(2) $b \in \langle a \rangle \Rightarrow \langle b \rangle \subseteq \langle a \rangle$

Proof

(1) Assume $\text{ord}(a) = m < \infty$

$$|\langle a \rangle| = |\{ e, a, \ldots, a^{n-1} \}| = m$$
Theorem
\[\text{ord}(a) = n, \text{ fix } h \in \mathbb{Z} \]

(a) \[\langle a^n \rangle = \langle a^{\gcd(h, n)} \rangle \]

(b) \[\text{ord}(a^k) = \frac{n}{\gcd(k, n)} \]

Proof. Let \(d = \gcd(n, k) \)

(a) "C" \[d = \gcd(n, k) \mid k \]

\[\Rightarrow h = md \]

\[\Rightarrow a^k = (a^d)^m \in \langle a^d \rangle \]

"C" \[d = sm + tk \] for some integers \(s \) and \(t \)

\[a^d = a^{sm + tk} = (a^m)^s (a^k)^t \]

\[= (a^k)^t \in \langle a^k \rangle \Rightarrow \text{claim. (Use Lemma b)} \]
\[\text{ord}(a^k) = \frac{1}{\langle a^k \rangle} = 1 \quad \langle a^d \rangle = 1 = \text{ord}(a^d) \]

Lemma a

\[d = \gcd(m, n) | m \Rightarrow m \equiv m \mod d \]

\[\Rightarrow (a^d)^j = a^{jd} = e \quad \text{if } 0 \leq j < m \]

(because then \(0 \leq jd < md = n \) and hence \(a^{jd} = e \))

\[\text{ord}(a) ! \]

and \((a^d)^m = a^{md} = a^n = e \)

\[\Rightarrow \text{ord}(a^d) = m = \frac{m}{d} \]

\[\text{ord} (a^k) \]
Example: What is the order of 20 in \(\mathbb{Z}_{50} \)?

Recall: \(\mathbb{Z}_{50} \) is cyclic with generator 1 \(\equiv a \) (\(\text{ord}(a) = 1, \quad a^k \equiv 1 \) (translating to additive notation).

\[
\begin{align*}
\text{ord}(20) &= \gcd(20, 50) = 10 \\
n &= 50 = \text{ord}(1)
\end{align*}
\]

This was a special case of

Corollary 1

The order of \(m \) in \(\mathbb{Z}_n \) is equal to \(\gcd(m, n) \).

Corollary 2

Let \(G \) be a cyclic group \(|G| = n \)

\(b \in G \Rightarrow \text{ord}(b) \mid m \)

Proof:

Let \(a \) be a generator of \(G \), i.e., \(G = \langle a \rangle \)

\(\Rightarrow b = a^k \) for some \(k \).

\(\Rightarrow \text{ord}(b) = \gcd(k, n) \mid m \). \(\checkmark \)
Corollary 3: Which elements in \(G \) generate \(\langle a \rangle \)?

\[\langle a^k \rangle = \langle a \rangle \iff \gcd(k, n) = 1 \]

Example: Assume \(\text{ord}(a) = 12 \), \(G = \langle a \rangle \)
Find all elem. \(b \) in \(G \) s.t. \(G = \langle b \rangle \)?

Solution: by corollary 3, \(b = a^k \) s.t. \(\gcd(k, 12) = 1 \)

Solution: \(k \in \{1, 5, 7, 11\} \)

i.e. \(\langle a \rangle = \langle a^5 \rangle = \langle a^7 \rangle = \langle a^{11} \rangle \)
Question: What are the possible subgroups of a cyclic group?

Theorem

Let \(G = \langle a \rangle \) cyclic

Any subgroup \(H \subset G \) is also cyclic, i.e. \(H = \langle a^k \rangle \) for some \(k \)

Proof

Let \(H \subset G \) be a subgroup

Let \(t \) be smallest positive integer such that \(a^t \in H \)
(assume \(H \neq \{e_3\} \))

Claim: any elem. in \(H \) is of the form \(a^m = (a^k)^n \) for some integer \(m \).

Proof

Let \(a^k \in H \)

Let \(k = tq + r \), \(0 \leq r < t \)
$a^k = (a^t)^q a^r$

can solve for a^r, as $[(a^t)^q]^{-1} \in H$

$\Rightarrow a^r = (a^{tq})^{-1} a^k \in H$

If $r > 0$ \text{ contradicts } t \text{ smallest pos. integer } s.t. \ a^t \in H \ (as \ r < t !)\\
\Rightarrow r = 0$ \ i.e. \ $1 = tq$

$\Rightarrow b = a^k = (a^t)^q \in \langle a^t \rangle$ \ $\Rightarrow H \text{ cyclic.}$
Theorem: Let \(G \) be a finite cyclic group of order \(n \).

Then, there exists exactly one subgroup \(H \) for each divisor \(d \mid n \), and these are all subgroups of \(G \).

Proof: Follow from previous theorem and its proof.

We have seen that a cyclic group \(G \) contains a subgroup \(H \) generated by an element \(a \) such that

\[H = \langle a \rangle = \langle \text{g.c.d.}(b, n) \rangle \]

where \(b \) is any divisor of \(n \). This subgroup is the first theorem today.

Example: Write down all subgroups of \(\mathbb{Z}_{12} \).

Answer: The subgroups are given by divisors of 12:

- Subgroups are
 - \(\langle 1 \rangle = \mathbb{Z}_{12} \)
 - \(\langle 2 \rangle, \langle 3 \rangle, \langle 4 \rangle, \langle 6 \rangle \)
 - \(\{0, 1, 2, 4, 6, 8, 10\} \)
 - \(\{0, 1, 4, 8\} \)