Fundamental Theorem of Calculus (FTC II)

1. If integrable on $[a,b]$ $\Rightarrow F(x) = \int_a^x f(t) \, dt$ is continuous
2. If moreover, continuous on $x_0 \in (a,b)$ $\Rightarrow F$ differentiable at x_0
 and $F'(x_0) = f(x_0)$

Proof done in last lecture

For part 2, we showed that for every $\varepsilon > 0$ we can find $\delta > 0$ such that

$$\left| \frac{F(x) - F(x_0)}{x - x_0} - f(x_0) \right| < \varepsilon$$

$$\Rightarrow \lim_{x \to x_0} G(x) = f(x_0) \Leftrightarrow \lim_{x \to x_0} \frac{F(x) - F(x_0)}{x - x_0} = f(x_0)$$

$\Rightarrow F$ differentiable at x_0
Application:

Theorem (Change of Variables)

Let I, J be open intervals

$\mu: J \to I$ such that μ' is continuous

(in particular, μ differentiable)

$f: I \to \mathbb{R}$ continuous

$\Rightarrow f \circ \mu$ is continuous

and $\int_{a}^{b} f(\mu(x)) \mu'(x) \, dx = \int_{\mu(a)}^{\mu(b)} f(u) \, du$

$u(a)$
Proof. Use chain rule for differentiation and FTC I & II.

Fix \(c \in I \)

let \(F(u) = \int_{a}^{u} f(t) \, dt \)

\[\Rightarrow F'(u) = f(u) \quad \forall u \in I \text{ by FTC II} \]

let \(g = F \circ u \)

chain rule \(\Rightarrow g'(x) = F'(u(x)) \cdot u'(x) \)

\[\int_{a}^{b} g'(x) \, dx = \int_{a}^{b} f(u(x)) \cdot u'(x) \, dx = \int_{a}^{b} f(u(x)) \, dx = g(b) - g(a) \text{ by FTC I} \]

\[= F(u(b)) - F(u(a)) \]
\[u(b) \int_c f(t) \, dt - u(c) \int_c f(t) \, dt = - \int_{u(a)}^{u(b)} f(t) \, dt \]

Def of \(F \)

\[= \int_c f(t) \, dt + \int_{u(a)}^{u(b)} f(t) \, dt \]

Rename variable

\[= \int_{u(a)}^{u(b)} f(t) \, dt \quad \text{(\(t \to x \))} \]
Example

Assume \(g : I \to \mathbb{R} \) one-to-one and differentiable

\[J = g(I) \] is also an open interval.

have shown: \(g^{-1} : J \to I \) is also differentiable

claim:

\[\int_a^b g(x) \, dx + \int_{g(a)}^{g(b)} g^{-1}(u) \, du = b \, g(b) - a \, g(a) \]
Clear from picture:

\[
green \text{ area} + yellow \text{ area} = \text{area of big red} - \text{area of small red.}
\]

i.e.
\[
\int_a^b g(x) \, dx + \int_{g(a)}^{g(b)} g^{-1}(u) \, du = b \, g(b) - a \, g(a)
\]

Rigorous proof: put \(f = g^{-1}, \quad u = g \)

apply change of variable formula:
\[
\begin{align*}
\int_a^b g^{-1} \left(g(x) \right) \frac{dg^{-1}(x)}{dx} \, dx &= \int_{g(a)}^{g(b)} g^{-1}(u) \, du \\
\int_a^b x \, g'(x) \, dx &= x \, g(x) \bigg|_a^b - \int_a^b g(x) \, dx
\end{align*}
\]
\[\int_{g(a)}^{g(b)} g'(u) \, du = b g(b) - a g(a) - \int_{a}^{b} g(x) \, dx \]

\[\Rightarrow \text{claim} \]

Explicit application:

Calculate \[\int_{0}^{\frac{\sqrt{2}}{2}} \arcsin x \, dx \] using formula above.

Solution:

Let \(g(u) = \sin u \) \[0 \leq u \leq \frac{\pi}{6} \]

\(g(a) = 0 \) \(g\left(\frac{\pi}{2}\right) = \frac{1}{2} \)

\(a = 0 \) \(b = \frac{\pi}{6} \)

\[\Rightarrow \] \(g^{-1}(x) = \arcsin x \) \[0 \leq x \leq \frac{\sqrt{2}}{2} \]

By formula:

\[\int_{0}^{\frac{\sqrt{2}}{2}} \arcsin x \, dx + \int_{0}^{\frac{\pi}{6}} \sin u \, du = \frac{\pi}{6} \cdot \frac{1}{2} - 0 \cdot 0 \]
Solve for first integral:

\[
\int_{0}^{\frac{\pi}{12}} \arcsin x \, dx = \frac{\pi}{12} - \int_{0}^{\frac{\pi}{12}} \sin x \, dx
\]

\[
= \frac{\pi}{12} - \left(-\cos x \right]_{0}^{\frac{\pi}{12}}
\]

\[
= \frac{\pi}{12} + \cos \frac{\pi}{12} - \cos 0
\]

\[
= \frac{\pi}{12} + \frac{\sqrt{3}}{2} - 1
\]
Remarks:

0. We have defined integrals only for bounded functions over a finite interval. In some cases, this can be extended to unbounded functions and/or intervals of infinite length.

Example: \(f(x) = \frac{1}{\sqrt{x}} \)

\(f(x) \) unbounded on interval \([0, 1]\)

but bounded on interval \([\varepsilon, 1]\), \(\varepsilon > 3 \)

\[
\int_{\varepsilon}^{1} \frac{1}{\sqrt{x}} \, dx = \int_{\varepsilon}^{\frac{1}{\sqrt{2}}} x^{-\frac{1}{2}} \, dx = \left. \frac{x^{\frac{1}{2}}}{\frac{1}{2}} \right|_{\varepsilon}^{1} = 2 - 2\sqrt{\varepsilon}
\]
In this case, we can define
\[
\int_0^1 \frac{1}{\sqrt{x}} \, dx = \lim_{\varepsilon \to 0} \int_0^{\varepsilon} \frac{1}{\sqrt{x}} \, dx = \lim_{\varepsilon \to 0} 2 - 2\sqrt{\varepsilon} = 2
\]
Similarly, we can define
\[
\int_1^\infty \frac{1}{x^2} \, dx = \lim_{K \to \infty} \int_1^K \frac{1}{x^2} \, dx = \lim_{K \to \infty} \left[-x^{-1} \right]_1^K = \lim_{K \to \infty} 1 - \frac{1}{K} = 1
\]
These types of integrals, defined via limits in integration limits, are called improper integrals.
have seen that the function $f : [0, 1] \to \mathbb{R}$

$$f(x) = \begin{cases}
1 & \text{x rational} \\
0 & \text{x irrational}
\end{cases}$$

is not integrable in our definition via Darboux sums.

There exists a more general approach, called the Lebesgue integral, which agrees with our definition for functions for which the integral is defined but which also works for more general functions like the one above.

The value of the Lebesgue integral for f as above is equal to 0.