
Some Solutions for Practice Final 2

Observe : Solutions here may sometimes be a little sketchier than what is expected in
the exam. Make sure you justify all your steps.

1. (a) Calculate the coefficients using the formula (for L = 1)
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2. (a) We first calculate separable solutions. It follows from the boundary conditions (fill

in the details yourself!) that they are of the form sinnx e−n
2t. It follows from the

initial value conditions that the solution is given by

w(x, t) = sin(2x)e−4t + sin(3x)e−9t.

(b) The solution is v(x) = x/π (check that all conditions are satisfied!)

(c) Let ũ = u− v, with v as in (b). Then we have

ũ(0, t) = 0, ũ(π, t) = 0, t > 0,



ũ(x, 0) = sin(2x) + sin(3x).

Moreover, ũ also satisfies the heat equation. Hence ũ = w, with w as in (a). As
u = ũ+ v, we obtain the solution

u(x, t) = sin(2x)e−4t + sin(3x)e−9t + x/π.

3. (a) Solution: f(r) = J0(
√
λnr), where λn =

z2
0n

a2 and z0n is the n-th root of the
derivative J ′0(z). Ask if you do not know how to justify this.

(b) Using the orthogonality of the eigenfunctions vn(r) = J0(
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the inner product
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4. (a) We use the same orthogonality arguments as in Problem 1. Hence we obtain as
result
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(b) There was a misprint in the problem: It should be ...r dr instead of dr at the end of
the integral. The value of the integral is equal to 0 as the functions are eigenfunctions
of −∆ = −∇2 for different eigenvalues, by the theorem mentioned.

5. Let us write u(x, y) = X(x)Y (y). Separating variables, we have

X ′′(x) = −λX, Y ′′(y) = λY,

with boundary conditions X ′(0) = 0 = X ′(π). These boundary conditions suggested
the choice of the sign for λ It follows (fill in the details!) that

X(x) = cos(nx), with λ = n2.

For λ = n2 the solution for Y is given by

Y (y) = An cosh(ny) + Bn sinh(ny).

It follows from the remaining boundary condiitions (justify!)

u(x, y) =
3

sinh 2π
cos(2x) sinh(2y) +

2

sinh 5π
cos(5x) sinh(5y).


