Observe : Solutions here may sometimes be a little sketchier than what is expected in the exam. Make sure you justify all your steps.

1. (a) Calculate the coefficients using the formula (for $L=1$)

$$
A_{n}=2 \int_{0}^{1} x \cos n \pi x d x
$$

via integration by parts.
(b) Using the fact that $x=\frac{A_{0}}{2}+\sum_{n=1}^{\infty} A_{n} \cos n \pi x$, we obtain

$$
\begin{equation*}
\int_{0}^{1} x^{2} d x=\int_{0}^{1}\left(\frac{A_{0}}{2}+\sum_{n=1}^{\infty} A_{n} \cos n \pi x\right)\left(\frac{A_{0}}{2}+\sum_{m=1}^{\infty} A_{n} \cos m \pi x\right) d x \tag{*}
\end{equation*}
$$

By orthogonality relations we have

$$
\int_{0}^{1} \cos n \pi x \cos m \pi x d x= \begin{cases}0 & \text { if } n \neq m \\ \frac{1}{2} & \text { if } n=m\end{cases}
$$

Hence the right hand side of $(*)$ is equal to

$$
\frac{A_{0}^{2}}{4}+\frac{1}{2} \sum_{n=1}^{\infty} A_{n}^{2}
$$

Now observe that the left hand side of $(*)$ is equal to $\frac{1}{3}$, and that $A_{0}=1$. Hence we obtain

$$
\begin{aligned}
\frac{A_{0}^{2}}{4}+\sum_{n=1}^{\infty} A_{n}^{2} & =2\left(\frac{A_{0}^{2}}{4}+\frac{1}{2} \sum_{n=1}^{\infty} A_{n}^{2}\right)-\frac{A_{0}^{2}}{4}= \\
& =\frac{2}{3}-\frac{1}{2}=\frac{1}{6}
\end{aligned}
$$

2. (a) We first calculate separable solutions. It follows from the boundary conditions (fill in the details yourself!) that they are of the form $\sin n x e^{-n^{2} t}$. It follows from the initial value conditions that the solution is given by

$$
w(x, t)=\sin (2 x) e^{-4 t}+\sin (3 x) e^{-9 t}
$$

(b) The solution is $v(x)=x / \pi$ (check that all conditions are satisfied!)
(c) Let $\tilde{u}=u-v$, with v as in (b). Then we have

$$
\tilde{u}(0, t)=0, \quad \tilde{u}(\pi, t)=0, \quad t>0
$$

$$
\tilde{u}(x, 0)=\sin (2 x)+\sin (3 x)
$$

Moreover, \tilde{u} also satisfies the heat equation. Hence $\tilde{u}=w$, with w as in (a). As $u=\tilde{u}+v$, we obtain the solution

$$
u(x, t)=\sin (2 x) e^{-4 t}+\sin (3 x) e^{-9 t}+x / \pi
$$

3. (a) Solution: $f(r)=J_{0}\left(\sqrt{\lambda_{n}} r\right)$, where $\lambda_{n}=\frac{z_{0 n}^{2}}{a^{2}}$ and $z_{0 n}$ is the n-th root of the derivative $J_{0}^{\prime}(z)$. Ask if you do not know how to justify this.
(b) Using the orthogonality of the eigenfunctions $v_{n}(r)=J_{0}\left(\sqrt{\lambda_{n}} r\right)$ with respect to the inner product

$$
(f, g)=\int_{0}^{a} f(r) g(r) r d r
$$

we obtain

$$
A_{n}=\frac{\left(r^{2}, v_{n}\right)}{\left(v_{n}, v_{n}\right)}=\frac{\int_{0}^{a} r^{2} J_{0}\left(\sqrt{\lambda_{n}} r\right) r d r}{\int_{0}^{a} J_{0}^{2}\left(\sqrt{\lambda_{n}} r\right) r d r}
$$

4. (a) We use the same orthogonality arguments as in Problem 1. Hence we obtain as result

$$
(\phi, \psi)=2(-1) \frac{1}{2}+(-4) 6 \frac{1}{2}+3(0) \frac{1}{2}+(-10)(-2) \frac{1}{2}+5(3) \frac{1}{2}+(0)(-1) \frac{1}{2}=\frac{9}{2}
$$

(b) There was a misprint in the problem: It should be $\ldots r d r$ instead of $d r$ at the end of the integral. The value of the integral is equal to 0 as the functions are eigenfunctions of $-\Delta=-\nabla^{2}$ for different eigenvalues, by the theorem mentioned.
5. Let us write $u(x, y)=X(x) Y(y)$. Separating variables, we have

$$
X^{\prime \prime}(x)=-\lambda X, \quad Y^{\prime \prime}(y)=\lambda Y
$$

with boundary conditions $X^{\prime}(0)=0=X^{\prime}(\pi)$. These boundary conditions suggested the choice of the sign for λ It follows (fill in the details!) that

$$
X(x)=\cos (n x), \quad \text { with } \lambda=n^{2}
$$

For $\lambda=n^{2}$ the solution for Y is given by

$$
Y(y)=A_{n} \cosh (n y)+B_{n} \sinh (n y)
$$

It follows from the remaining boundary condiitions (justify!)

$$
u(x, y)=\frac{3}{\sinh 2 \pi} \cos (2 x) \sinh (2 y)+\frac{2}{\sinh 5 \pi} \cos (5 x) \sinh (5 y)
$$

