EXERCISES MATH 202B - 2nd Assignment

1. Let \(G = \mathbb{Z}/3 \), and let \(V \) be a \(\mathbb{C}G \)-module. You can assume that \(V \) is a direct sum \(\bigoplus_j L_j \) of simple \(G \)-modules, and there are only three different simple \(G \)-modules up to isomorphism, \(V_0, V_1 \) and \(V_2 \). The action of \(\overline{1} \) on \(V_i \) is given by multiplication by \(\theta^k \), where \(\theta = e^{2\pi i / 3} \). We would like to determine the number \(m_i \) of simple \(G \)-modules \(L_j \) in the decomposition above which are isomorphic to \(V_i \), for each \(i \).

(a) Let \(\chi_a = Tr(\rho(\overline{a})) \), the trace of the linear map \(\rho(\overline{a}) \) via which \(\overline{a} \) acts on \(V \). Calculate the numbers \(m_i \) in terms of the numbers \(\chi_a \) (hint: use that you can diagonalize the matrices \(\rho(\overline{a}) \)).
(b) Let \(V = \text{span} \{ e_1, e_2 \} \) and define the action of \(\overline{1} \) by \(\overline{1}.e_1 = e_2 \) and \(\overline{1}.e_2 = -e_1 - e_2 \). Use (a) to find the numbers \(m_i \) for \(V \).
(c) Prove in general: Whenever \(V \) is a \(G \)-module where the action of \(\overline{1} \) is represented by a real matrix, then \(m_1 = m_2 \).

2. Let \(F = \mathbb{R} \), and let \(A \) be the subalgebra of \(M_2(\mathbb{R}) \) generated by the matrix

\[
\begin{pmatrix}
0 & 1 \\
-1 & 0 \\
\end{pmatrix}
\]

(This means \(A \) consists of all polynomials in \(i \)).
(a) Show that \(V = \mathbb{R}^2 \) is a simple \(A \)-module.
(b) Calculate \(\text{End}_A V \).
(c) Consider the same algebra now with \(F = \mathbb{C} \) as a subalgebra of \(M_2(\mathbb{C}) \). What is \(\text{End}_A V \) now? Is it still simple?

3. Let \(V, W \) be \(\mathbb{C}G \)-modules, where \(G \) a finite groups with \(|G| \) elements. Moreover, let \(f : V \rightarrow W \) be a linear map and define \(f(v) = \frac{1}{|G|} \sum_{g \in G} g^{-1}.f(g.v) \).

(a) Show that \(\overline{f} \in \text{Hom}_{\mathbb{C}G}(V, W) \).
(b) Now let \(\phi : V \rightarrow \mathbb{C} \) be any linear map, and let \(V, W \) be simple \(G \)-modules with \(V \not\cong W \). Show that for any \(v \in V \), \(w \in W \) we have \(\sum_{g \in G} \phi(g.v)g^{-1}.w = 0 \). (Hint: Consider the linear map \(f : V \rightarrow W : \overline{v} \mapsto \phi(\overline{v})w \))
(c) Let \(\psi : W \rightarrow \mathbb{C} \) be linear. Show that \(\sum_{g \in G} \phi(g.v)\psi(g^{-1}.w) = 0 \).
(d) Let \(\{ v_1, v_2, \ldots, v_d \} \) and \(\{ w_1, w_2, \ldots, w_e \} \) be bases for \(V \) and \(W \), and let \(\rho_V(g) \) and \(\rho_W(g) \) be the matrices which describe the action of \(g \) on \(V \) and \(W \) with respect to these bases. Prove the following statement, which is part of a result usually referred to as orthogonality relations for matrix coefficients:

\[
\sum_g \rho_V(g)_{ij} \rho_W(g^{-1})_{rs} = 0 \quad \text{for any } 1 \leq i, j \leq d, 1 \leq r, s \leq e.
\]

Hint: Find suitable functionals and vectors to reduce the formula in (c) to the one in (b).
(e) Check the orthogonality relation explicitly for the one-dimensional representations \(V_\theta \) of \(\mathbb{Z}/N\mathbb{Z} \), where \(\theta \) is an \(N \)-th root of unity, and the action is given by \(\overline{1}.v = \theta v \).