1. In the following we consider symmetric polynomials in \(N \) variables with all Young diagrams having at most \(N \) rows. Let \(E_j \) be the \(j \)-th elementary symmetric function, i.e.

\[
E_j = \sum_{1 \leq i_1 < \ldots < i_j \leq k} x_{i_1} x_{i_2} \ldots x_{i_j}.
\]

Define for any Young diagram \(\lambda \) the polynomial \(E_\lambda \) to be the product of the \(E_j \)'s corresponding to the columns of \(\lambda \) (e.g. \(E_{[2,3,1]} = E_3(E_2)^2 \)).

(a) Show that \(E_\lambda = x^\lambda + \text{lower terms} \).
(b) Show that the \(E_\lambda \) form a basis for the symmetric polynomials in \(N \) variables.
(c) Prove the ‘fundamental theorem of symmetric functions’: The symmetric polynomials over \(\mathbb{Z} \) are isomorphic to the polynomial ring \(\mathbb{Z}[y_1, \ldots, y_k] \) in \(k \) variables. (Hint: Show that the map \(y_k \mapsto E_i \) induces this isomorphism).

2. Let \(d \) be the \(N \times N \) diagonal matrix with diagonal entries \(x_1, x_2, \ldots, x_N \). We have calculated \(Tr_{V^\otimes n}(\pi d) \) for any permutation \(\pi \) in the lecture. You can use the following theorem which we will prove later:

Frobenius’ Theorem: The character \(\chi_\lambda(\pi) \) of the permutation \(\pi \) in the simple representation labeled by the Young diagram \(\lambda \) with \(\leq N \) rows is equal to the coefficient of \(x^{\lambda+\rho} \) in \(Tr_{V^\otimes n}(\pi d) \Delta \), where \(\rho_i = N - i \), and where \(\Delta = \prod_{1 \leq i < j \leq N} (x_i - x_j) \).

(a) Calculate \(\chi_{[2,2,1]}((123)(45)) \).
(b) Calculate the \(S_n \) character \(\chi_\lambda(\pi) \) for all Young diagrams \(\lambda \), where \(\pi \) is a full \(n \)-cycle. (Hint: Show first that if \(\lambda \) is not a hook diagram (hook diagrams means it only has boxes in the the first row or the first column), then \(\chi_\lambda(\pi) = 0 \).

3. Let \(\dim V = N \), with \(\{v_1, v_2, \ldots, v_N\} \) a basis for \(V \), and let \(\alpha \in \mathbb{N}^N \) and \(V^\alpha \) be as defined in the lecture. Moreover, let \([1^n]\) denote the Young diagram with all of its \(n \) boxes in one column. Let \(q = q_{[1^n]} = \sum_{\sigma \in S_n} \varepsilon(\sigma) \sigma \).

(a) Show that \(q(w_1 \otimes w_2 \otimes \ldots \otimes w_n) = 0 \) if \(w_1, w_2, \ldots, w_n \) are linearly dependent. (Hint: It is enough to show this assuming that two of the vectors are equal, by linearity.)
(b) Calculate the dimension of \(qV^\alpha \) for all possible \(\alpha \). Prove that \(Tr_{V^\otimes n}(qd) = E_n(x_1, x_2, \ldots, x_N) \), where \(d = \text{diag}(x_1, \ldots, x_N) \).
(c) Let \(t \) be a tableau of shape \(\lambda \) and let \(q_t = \sum_{\sigma \in Q_t} \varepsilon(\sigma) \sigma \), where \(Q_t \) is the column stabilizer of \(t \). Show that \(q_t V^\otimes n = 0 \) if the number of rows of \(\lambda \) is greater than \(N \).

Remark It is possible to reprove the combinatorial lemmas about the action of \(q_t \) on \(M^\mu \) by looking at the action of \(q_t \) on \(V^\otimes n \).