This part of the Applied Algebra exam will be scaled to make up 60% of the whole exam. The problems have the same value, except for the last one which will count more. Try to do as many problems as possible.

1. Let \(p_n = \frac{1}{n!} \sum_{\sigma \in S_n} \sigma \) and let \(d \) be the diagonal matrix with diagonal entries \(x_1, \ldots, x_N \), where \(V = \mathbb{C}^N \). The matrix \(d \) acts on each factor of \(V^\otimes n \), thereby defining a linear action on \(V^\otimes n \). The action of \(S_n \) on \(V^\otimes n \) is given via permuting the tensor factors.
 (a) Calculate \(Tr_{V^\otimes n}(p_n d) \).
 (b) The value of \(Tr_{V^\otimes 10}(p_4 \otimes p_4 \otimes p_2 d) \) can be written as a linear combination of Schur functions. Calculate the coefficient of \(s_{[6,3,1]} \).
 (c) Calculate the multiplicity of the simple \(S_{10} \) module \(S^{[3,3,3,1]} \) in \(V^\otimes 10 \) for \(\dim(V) = N = 5 \) and for \(N = 3 \).

2. Let \(e_r \) be the \(r \)-th elementary symmetric function in the variables \(x_1, x_2, \ldots, x_n \).
 (a) Show that the determinant of \((\partial e_i/\partial x_j)_{1 \leq i, j \leq n} \) is a homogeneous polynomial and calculate its degree.
 (b) Calculate the determinant.

3. Let \(\rho : G \to GL(V) \) be a representation of the finite group \(G \) into the group \(GL(V) \) of invertible linear maps on the vector space \(V \).
 (a) Show that also the map \(\hat{\rho} : g \in \hat{G} \mapsto \rho(g^{-1})^t \) defines a representation, where \(t \) means the transpose of a matrix.
 (b) Let \(\chi_\rho \) and \(\chi_{\hat{\rho}} \) be the characters of \(\rho \) and \(\hat{\rho} \). Show that \(\chi_{\hat{\rho}}(g) = \bar{\chi}_\rho(g) \) (i.e. the complex conjugate) for all \(g \in \hat{G} \).
 (c) Let \(V \) be a simple \(G \)-module. Show: If \(W \) is a simple \(G \) module such that the trivial representation occurs in \(V \otimes W \), then \(W \) must be isomorphic to the representation defined in (a).

4. Let \(f_1 = x^2 y^2 - x \) and \(f_2 = x^3 y - 1 \).
 (a) Calculate a Gröbner basis for \(\langle f_1, f_2 \rangle \cap k[x] \) and for \(\langle f_1, f_2 \rangle \), where \(\langle f_1, f_2 \rangle \) is the ideal in \(k[x, y] \) generated by \(f_1 \) and \(f_2 \).
 (b) What is the variety \(V(f_1, f_2) = \{(a, b) \in \mathbb{C}^2 \mid f(a, b) = 0, f \in \langle f_1, f_2 \rangle \} \) for \(k = \mathbb{C} \)?

5. Let \(G \) be the subgroup of \(S_4 \) generated by the permutations (12) and (34), and let \(V \) be the simple representation of \(S_4 \) labeled by the Young diagram [2,1,1].
 (a) Calculate the Molien series of \(k[x_1, x_2, x_3]^G \).
 (b) Let \(\tilde{G} \cong \mathbb{Z}/2 \times \mathbb{Z}/2 \) with generators \(g_1 \) and \(g_2 \), and let \(W \) be the three-dimensional \(\tilde{G} \)-module with basis \(w_1, w_2, w_3 \) such that the action of \(G \) is given by
 \[
 g_1 w_i = \begin{cases}
 -w_i & \text{if } i=1,2, \\
 w_3 & \text{if } i=3,
 \end{cases} \quad g_2 w_i = \begin{cases}
 w_1 & \text{if } i=1, \\
 -w_i & \text{if } i=2,3.
 \end{cases}
 \]
 Write down a Hironaka decomposition for \(k[y_1, y_2, y_3]^\tilde{G} \).
 (c) Find presentations of the rings \(k[y_1, y_2, y_3]^\tilde{G} \) and \(k[x_1, x_2, x_3]^G \) via generators and relations.