Remark: Let V, W be G-modules.

$\implies \text{Hom}_G(V, W)$ is a G-module with G-action defined by $g \cdot T = \text{sw}(g) T \text{sw}(g)^{-1}$ where $\text{sw}(g): w \mapsto g \cdot w$.

If G is a group, $x \in G$.

$$x \cdot T = \frac{d}{d x} \left(e^{x} (b x) T e^{-x} (b x) \right)_{x=0}$$

$$= xT - TX$$

Let $\text{Hom}_G(V, W) = \{ T: V \to W, xT = T(x)W \} \quad \forall x \in G, x \cdot W$.

\implies action of G on $\text{Hom}_G(V, W)$ defined.

Theorem: If V is a G-module \implies G-module $W = V \oplus W'$ s.t.

$V = W \oplus W'$.

Proof: Assume W is mod. $\implies \text{dim} W \leq \text{dim} W - 1$ and $W_{n+1} = 0$.

If G acts trivially on V/W, then

G_v acts trivially on V/W.

Then G acts on W' via nonzero scalar on W.

If W' is eigenspace of G for eigenvalue 0.

\implies $V = W \oplus W'$ s.t. $\text{dim} W = \text{dim} V - 1$ and $W_{n+1} = 0$.

Statement: If $\oplus_{i=0}^n W_i = W_0$ s.t. W_0 is a G-module s.t. W_{i+1}/W_i simple.

Then, by induction, $\exists W'$ s.t. $V/W = W/W_0 = W/W_0$.

By $\oplus_{i=0}^n W_i = W_0$ s.t. W_{i+1}/W_i simple.

$W_{i+1}/W_i = W_{i+1}/W_i$.

Proof: Let $0 = W_0 \subseteq W_1 \subseteq \cdots \subseteq W_n = V/W$.

By induction, $\exists W'$ s.t.

$\implies W' = W/W_0$.

Proposition: W' is G-module arbitrary.

Consider the map $\varphi: \text{Hom}_G(V, W) \to \text{Hom}_G(V, W)$.

This is a G-module map (action is trivial on both $\text{Hom}_G(V, W)$ and $\text{Hom}_G(V, W)$).

The image of $\varphi = \text{Hom}_G(V, W) = C/W$.

Ker φ is submodule of $\text{Hom}_G(V, W)$ with codimension 1.

$$\varphi \circ \varphi = \text{Hom}_G(V, W) = \ker \varphi \oplus C/W,$$

$$\varphi = \ker \varphi \oplus C/W \quad \text{if and only if} \quad \varphi^2 = \varphi.$$