MATH 110 PRACTICE FINAL

Please justify all your steps!

1. (a) Calculate the cosine series of the function x on the interval $[0,1]$. You should do this using integration by parts.
(b) Let A_{n} be the coefficients of the cosine series of x, as in (a). Calculate

$$
A_{0}^{2} / 4+\sum_{n=1}^{\infty} A_{n}^{2}
$$

Hint: You should be able to do this even if you could not solve (a).
(c) What is the value of the cosine series of (a) for $x=-1 / 2$? Again, you should be able to answer this question even if you could not solve (a).
2. (a) Find the solution of the heat equation $w_{t}=w_{x x}$ with initial and boundary conditions

$$
\begin{gathered}
w(0, t)=w(\pi, t)=0, \quad t>0 \\
w(x, 0)=\sin (2 x)+\sin (3 x) \quad 0<x<\pi
\end{gathered}
$$

(b) Find the solution of the steady state problem $v_{x x}=0$ with boundary conditions $v(0)=0$ and $v(\pi)=1$ (remember that for steady state temperature we have $v_{t}=0$, i.e. we can consider v as a function of x only).
(c) Find the solution of the heat equation $u_{t}=u_{x x}$ with initial and boundary conditions

$$
\begin{gathered}
u(0, t)=0 \quad u(\pi, t)=1, \quad t>0 \\
u(x, 0)=\sin (2 x)+\sin (3 x)+x / \pi, \quad 0<x<\pi
\end{gathered}
$$

3. Let D be the disk $x^{2}+y^{2} \leq a^{2}$. We have shown in class that the eigenfunctions v of $-\Delta$ satisfying $-\Delta v=\lambda v$ are given by

$$
v(r, \theta)=J_{m}(\sqrt{\lambda} r)\left(A_{m} \cos m \theta+B_{m} \sin m \theta\right), \quad m=0,1,2, \ldots
$$

(a) What are the eigenfunctions $v(r, \theta)=f(r)$ which do not depend on θ and which satisfy the boundary condition $f^{\prime}(a)=0$? What are their eigenvalues? (It is OK to describe the eigenvalues as the zeros of one or several functions; it may not be possible to give a more explicit description).
(b) Let λ_{n} be the eigenvalues of (a) with eigenfunctions v_{n}. One can show that the function $f(r)=r^{2}$ can be written as

$$
r^{2}=\sum_{n=1}^{\infty} A_{n} v_{n} .
$$

How does one calculate the coefficients A_{n} ? It is OK to write down formulas for A_{n} involving integrals without calculating them.

More problems on the back side!
4. (a) Consider the two explicit functions:

$$
\begin{gathered}
\phi(x)=2 \sin (\pi x)-4 \sin (2 \pi x)+3 \sin (4 \pi x)-10 \sin (5 \pi x)+5 \sin (6 \pi x) \\
\psi(x)=-\sin (\pi x)+6 \sin (2 \pi x)-2 \sin (5 \pi x)+3 \sin (6 \pi x)-\sin (7 \pi x)
\end{gathered}
$$

Please compute the integral:

$$
\langle\phi, \psi\rangle=\int_{0}^{1} \phi(x) \psi(x) d x
$$

Hint : You may freely quote the values of certain integrals we have covered. The answer can be given quickly, but you need to explain clearly what you are doing. Do not use a calculator to get a numerical answer.)
(b) Let J_{m} be the m-th Bessel function of the first kind, and let $z_{m, n}$ be its n-th zero. Calculate

$$
\int_{0}^{a} J_{5}\left(z_{5,3} r / a\right) J_{5}\left(z_{5,7} r / a\right) r d r
$$

Hint: Consider the theorem in Lecture 25 and its application to Bessel functions.
5. Consider the Laplace equation $\Delta u=0$ on the square $[0, \pi] \times[0, \pi]$. We assume the boundary conditions

$$
\begin{gathered}
u_{x}(0, y)=0=u_{x}(\pi, y) \\
u(x, 0)=0 \quad \text { and } \quad u(x, \pi)=3 \cos 2 x+2 \cos 5 x
\end{gathered}
$$

(a) Calculate separated solutions $u(x, y)=X(x) Y(y)$ subject to the given homogeneous boundary conditions.
(b) Calculate the solution of the Laplace equation subject to all boundary conditions.
6. Consider the Laplace equation $\Delta u=0$ on the upper semidisk D of radius 1 , given in polar coordinates by $r \leq 1$ and $0 \leq \theta \leq \pi$, subject to the boundary conditions $u(r, 0)=0=u(r, \pi)$.
(a) Write down the ordinary differential equations for $R(r)$ and for $\Theta(\theta)$, with boundary conditions, for separated solutions $u(r, \theta)=R(r) \Theta(\theta)$.
(b) Calculate the separated solutions $u(r, \theta)=R(r) \Theta(\theta)$ in (a).

