Final exam practice

Problem 1. Suppose that \(f : \mathbb{R} \to \mathbb{R} \) is differentiable and that \(f'(x) = 1 + 3x + x^4 \), while \(f(0) = 1 \). Find \(f(x) \) and justify that it is the unique solution.

Problem 2. (T) i) Prove that if \(f : I \to \mathbb{R} \) is differentiable and \(|f'(x)| \leq K, \forall x \in I \) then \(f \) is uniformly continuous on \(I \). Here \(I \) is an interval.
 ii) Prove that \(f(x) = \sqrt{x} \) is continuous on \([0, \infty)\) using the \(\epsilon - \delta \) definition.
 iii) Prove that \(f(x) = \sqrt{x} \) is differentiable on \((0, \infty)\) and compute \(f'(x) \).
 Is \(f \) differentiable at \(x = 0 \)?
 iv) Prove that \(f(x) = \sqrt{x} \) is uniformly continuous on \((1, \infty)\).
 v) Prove that \(f(x) = \sqrt{x} \) is uniformly continuous on \([0, a] \) for any \(a \geq 0 \), but \(f' \) is not bounded on \((0, a] \).
 vi) Prove that \(f(x) = \sqrt{x} \) is uniformly continuous on \([0, \infty)\).

Problem 3. (T) i) Write down the definition of a convergent sequence, that is \(\lim_{n \to \infty} a_n = a \).
 (T) ii) Using the definition i) prove that the limit of a sequence is unique, that is if \(\lim_{n \to \infty} a_n = a \) and \(\lim_{n \to \infty} a_n = b \) then \(a = b \).
 iii) Write down the negation of the definition in i), that is of the fact that \(\{a_n\} \) does not converge to \(a \).
 iv) Prove that \(\{a_n\} \) does not converge to \(a \) if and only if there is some \(\epsilon > 0 \) and a subsequence \(\{a_{n_k}\} \) such that \(|a_{n_k} - a| \geq \epsilon \) for all \(k \).
 v) Prove that a bounded sequence does not converge if and only if it has at least two convergent subsequences that converge to different limits.

Problem 4. Let \(f : [0, \infty) \to (0, \infty) \) a continuous and differentiable function. Assume \(f'(x) \leq c < 1, \forall x \in [0, \infty) \). Prove that there is a unique \(\hat{x} \in [0, \infty) \) such that \(f(\hat{x}) = \hat{x} \).

Problem 5. Let \(A, B \subset \mathbb{R} \) be bounded from above. Define the set \(A + B = \{a + b : a \in A, b \in B\} \). Prove that \(A + B \) is bounded from above and that
\[
\sup(A + B) = \sup A + \sup B.
\]
Note: you are allowed to use all result about \(\sup \) of a set.

NOTE: the use of (T) indicates a theoretical result, thus you should work them based on definitions only or things that you prove. For the problems without (T) you can use all theoretical results from the course.