Solution to Problem 3. We follow the steps of mathematical induction.

\[P(1) \text{ is true, since the LSH equals the RHS equals } 1. \]

Next we show that \(P(k) \) implies \(P(k + 1) \). \(P(k) \) is given

\[\sum_{j=1}^{k} j^2 = \frac{k(k+1)(2k+1)}{6} \]

As \(n = k + 1 \),

\[\sum_{j=1}^{k+1} j^2 = \sum_{j=1}^{k} j^2 + (k + 1)^2 \]

\[= \frac{k(k+1)(2k+1)}{6} + (k + 1)^2 \]

\[= \frac{(k+1)(2k^2 + k + 6k + 6)}{6} \]

\[= \frac{(k+1)(k+2)(2k+3)}{6} \]

So the identity also holds for \(n = k + 1 \), hence \(P(k + 1) \) is true.

Hence by Mathematical Induction, we proved the identity for all natural numbers.

Solution to Problem 6.

6a) was already done in class.

6b. As in the hint, fix \(m \), define \(S(n) \) to be the statement that \(mn \) is a natural number. We prove this by mathematical induction. Since \(m \times 1 = m \) is a natural number, so \(S(1) \) is true. Suppose \(S(k) \) is also true, that’s to say, \(m \times k \) is a natural number. Notice that \(m \times (k + 1) = m \times k + m \) is again a natural number by part (a), since \(m \times k \) and \(m \) are both natural number. So \(S(k + 1) \) is also true. So \(S(n) \) is true for all \(n \), namely \(m \times n \) is a natural number.

Solution to Problem 1.1.7. Consider the set

\[A := \{n \in \mathbb{N} : \text{either } n = 1 \text{ or } n - 1 \in \mathbb{N} \} \]

(this is the same set as the one provided in the hint).

Notice that \(A \) gathers some of the natural numbers. Formally we have this as

\[A \subseteq \mathbb{N} \]

If we try to list some of its elements we notice that: \(1 \in A \), \(2 \in A \), \(3 \in A \), So, it seems that \(A \) is quite nice and collects all of the natural numbers (formally, \(A = \mathbb{N} \)). This is just an intuition, not a proof.

Remark 1. Recall that \(\mathbb{N} \) was defined to be the intersection of all inductive subsets of \(\mathbb{R} \). Moreover, \(\mathbb{N} \) is the smallest inductive set in the sense that it’s contained in any other inductive set (equivalently, any other inductive set contains \(\mathbb{N} \)).

So, if we prove that \(A \) is inductive, it must be that \(A \) is a superset of \(\mathbb{N} \), i.e. we get that

\[A \supseteq \mathbb{N} \]

This, together with the reverse inclusion, allows us to conclude \(A = \mathbb{N} \).

Proof that \(A \) is inductive: We’ve seen that \(1 \in A \). Next we show that: \(a \in A \Rightarrow a + 1 \in A \). Fix an arbitrary \(a \in A \). Since \(A \subseteq \mathbb{N} \), \(a > 0 \), so we cannot have \(a + 1 = 1 \). Also, from \(a \in A \) and \(A \subseteq \mathbb{N} \), we have \(a \in \mathbb{N} \) and so \((a + 1) - 1 = a \in \mathbb{N} \). This shows that \(a + 1 \in A \).

Hence, at this point we have \(A = \mathbb{N} \). Now let (as in the hypothesis of the problem) \(n \in \mathbb{N} \), \(n > 1 \). From \(n \in \mathbb{N} \) and \(\mathbb{N} = A \), we have \(n \in A \). Looking at how \(A \) was defined, since \(n \neq 1 \), it must be that \(n - 1 \in \mathbb{N} \).

Solution to Problem 1.1.8. For \(m \in \mathbb{N} \), consider the statement:

\[S(m) : \forall n \in \mathbb{N}, n > m \text{ we have } n - m \in \mathbb{N} \]
We prove that $S(m)$ is true for any $m \in \mathbb{N}$ by induction.

The Base Case. $S(1)$ is the statement that $\forall n \in \mathbb{N}, n > 1$ we have $n - 1 \in \mathbb{N}$. This is precisely the statement of Problem 1.1.7. Hence $S(1)$ is true.

The Induction Step. We assume $S(k)$ is true and we want to derive that $S(k+1)$ is true.

Let $n \in \mathbb{N}$, $n > k + 1$. Then definitely $n > k$ (this allows us to apply $S(k)$) and $n - k > 1$. By $S(k)$, we have $n - k \in \mathbb{N}$. Using again the result of Problem 1.1.7 (applied with $n - k$ instead of n), we deduce $(n - k) - 1 \in \mathbb{N}$.

But $(n - k) - 1 = n - (k + 1)$. Therefore $n - (k + 1) \in \mathbb{N}$. We just proved that $S(k+1)$ is true.

By the Principle of Mathematical Induction, $S(m)$ is true for any $m \in \mathbb{N}$, i.e.

$$\forall m \in \mathbb{N}, \forall n \in \mathbb{N}, n > m \text{ we have } n - m \in \mathbb{N}$$

Solution to Problem 1.1.9. We'll show:

(i) $\forall m, n \in \mathbb{Z} : m + n \in \mathbb{Z}$

(ii) $\forall m, n \in \mathbb{Z} : m - n \in \mathbb{Z}$

(iii) $\forall m, n \in \mathbb{Z} : m \cdot n \in \mathbb{Z}$

Remark 2. Recall that $\mathbb{Z} = \{−n : n \in \mathbb{N}\} \cup \{0\} \cup \mathbb{N}$ (where by “$−n$” we understand $(−1) \cdot n$ as an operation in \mathbb{R}).

A useful property (which is easy to check) is: $k \in \mathbb{Z} \iff −k \in \mathbb{Z}$

Proof of (i). Let $m, n \in \mathbb{Z}$. We distinguish 4 cases.

Case 1: both m, n are positive. Then (i) follows from Problem 1.1.6(a).

Case 2: both m, n are negative. Then $n' := −n$ and $m' = −m$ are positive integers, i.e. are natural numbers.

By Case 1, $m' + n' \in \mathbb{Z}$ and by the Remark above, $−(m' + n') \in \mathbb{Z}$. But $−(m' + n') = (−m') + (−n') = m + n$. So $m + n \in \mathbb{Z}$.

Case 3: one of them is zero, say $m = 0$. Then $m + n = n \in \mathbb{Z}$.

Case 4: one of them is positive and the other one is negative, say $m > 0$ and $n < 0$. Then $m \in \mathbb{N}$ and $n' := −n \in \mathbb{N}$.

Notice that $m + n = m − n'$.

If $m > n'$, then by Problem 1.1.8, $m − n' \in \mathbb{N}$. Since $\mathbb{N} \subset \mathbb{Z}$ and $m + n = m − n'$, we get $m + n \in \mathbb{Z}$.

If $m = n'$, then $m + n = 0 \in \mathbb{Z}$.

If $m < n'$, then $m + n = −(n' − m)$. We can apply again Problem 1.1.8 to get $n' − m \in \mathbb{N}$ and by the Remark above $−(n' − m) \in \mathbb{Z}$. Thus $m + n \in \mathbb{Z}$.

Proof of (ii). Write $m − n = m + (−n)$. If $m, n \in \mathbb{Z}$, then $m, −n \in \mathbb{Z}$ and by (i), it follows that $m − n \in \mathbb{Z}$.

Proof of (iii). Let $m, n \in \mathbb{Z}$. We distinguish 3 cases.

Case 1: m is positive. Then $m \in \mathbb{N}$. We’ll prove that $m \cdot n \in \mathbb{Z}$ by induction on m. Fix $n \in \mathbb{Z}$ and consider the statement:

$$S(m) : m \cdot n \in \mathbb{Z}$$

The base case. $1 \cdot n = n \in \mathbb{Z}$, so $S(1)$ is true.

The induction step. Assume $S(k)$ is true, i.e. $k \cdot n \in \mathbb{Z}$. Then write $(k + 1) \cdot n = k \cdot n + n \in \mathbb{Z}$ (by (i)). This shows $S(k + 1)$ is true.

By the Principle of Mathematical Induction, $S(m)$ is true, for any $m \in \mathbb{N}$.

Case 2: $m = 0$. Then $m \cdot n = 0 \in \mathbb{Z}$.

Case 3: $m < 0$. Then $m' := −m \in \mathbb{N}$ and $m \cdot n = (−m') \cdot n = m' \cdot (−n)$. In this manner, we reduced the problem to Case 1 with m' instead of m and $−n \in \mathbb{Z}$ instead of n.