Solution to Problem 4.1.1. (a) False. Let \(f(x) = |x| \). We see that \(f \) is continuous but \(\lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0} = -1 \) and \(\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = 1 \), so \(f \) is not differentiable at 0.

(b) True. This is Proposition 4.5.

(c) False. Let \(f(x) = |x| \). Then, \(f(x) \) is not differentiable while \(f(x) = x^2 \) is differentiable.

Solution to Problem 4.1.2. We compute \(f'(x) = 3x^2 + 2 \). The equation of the tangent line at \(x_0 = 2 \) is \(y = f(2) + f'(2)(x - 2) = 13 + 14(x - 2) = 14x - 15 \).

Solution to Problem 4.1.3. First, We will show continuity. Let \(x_n \to 0 \). Then,
\[
\lim_{x \to 0^-} f(x_n) = \lim_{x \to 0^-} (m_1 x + 4) = 4 \quad \text{and} \quad \lim_{x \to 0^+} f(x_n) = \lim_{x \to 0^+} (m_2 x + 4) = 4.
\]
Thus, \(\lim_{x \to 0^-} f(x_n) = \lim_{x \to 0^+} f(x_n) \), so \(f \) is continuous at 0.

Now we compute
\[
\lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^-} \frac{(m_1 x + 4) - 4}{x} = m_1 \quad \text{and} \quad \lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{(m_2 x + 4) - 4}{x} = m_2.
\]
Since we assumed that \(m_1 \neq m_2 \), so the limits are not equal. Consequently, \(f \) is not differentiable at 0.

Solution to Problem 4.1.4. (a) Note that
\[
\frac{\sqrt{x + 1} - \sqrt{2}}{x - 1} = \frac{\sqrt{x + 1} + \sqrt{2}}{x - 1} = \frac{\sqrt{x + 1} - \sqrt{2}}{(\sqrt{x + 1} + \sqrt{2})(x - 1)} = \frac{x - 1}{(\sqrt{x + 1} + \sqrt{2})(x - 1)} = \frac{1}{\sqrt{x + 1} + \sqrt{2}}.
\]
Therefore,
\[
\lim_{x \to 1} \frac{\sqrt{x + 1} - \sqrt{2}}{x - 1} = \lim_{x \to 1} \frac{1}{\sqrt{x + 1} + \sqrt{2}} = \frac{1}{2\sqrt{2}}.
\]
(b) Note that \(f(1) = 1 + 2 = 3 \), and that
\[
\frac{x^3 + 2x - (1 + 2)}{x - 1} = \frac{(x^3 - 1) + 2(x - 1)}{x - 1} = \frac{(x - 1)(x^2 + x + 3)}{x - 1} = x^2 + x + 3.
\]
Therefore,
\[
\lim_{x \to 1} \frac{x^3 + 2x - (1 + 2)}{x - 1} = \lim_{x \to 1} (x^2 + x + 3) = 5.
\]
(c) Computing the difference quotient
\[
\frac{\frac{1}{1 + x^2} - \frac{1}{2}}{x - 1} = \frac{\frac{2 - (1 + x^2)}{2(1 + x^2)}}{x - 1} = \frac{1 - x^2}{2(1 + x^2)(x - 1)} = \frac{- x + 1}{2(1 + x^2)},
\]
we have that
\[
\lim_{x \to 1} \frac{\frac{1}{1 + x^2} - \frac{1}{2}}{x - 1} = \lim_{x \to 1} \frac{- x + 1}{2(1 + x^2)} = -\frac{1}{2}.
\]

Solution to Problem 4.1.8. We notice that: (a) \(f \) is differentiable at every point \(x_0 < 0 \) (since \(f \) is a constant function on \((-\infty, 0]) \) having \(f'(x_0) = 0 \); and (b) \(f \) is differentiable at every point \(x_0 > 0 \) (since \(f \) is a polynomial function on \((0, \infty)\) having \(f'(x_0) = nx_0^{n-1} \)).

We are left to study the differentiability at \(x_0 = 0 \). We immediately check that \(f \) is continuous at 0:
\[
\lim_{x \to 0^+} 0 = \lim_{x \to 0^-} x^n = f(0) = 0.
\]
Then, looking at the difference quotient, we have
\[
\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{0}{x} = 0, \quad \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^n}{x} = \lim_{x \to 0} x^{n-1} = 0
\]

Thus, the limit \(\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} \) exists and is equal to 0, i.e. \(f \) is differentiable at 0 and \(f'(0) = 0 \).

Solution to Problem 4.1.9. Plugging in \(x = 0 \) in the set of inequalities leads us to \(f(0) = 0 \). From \(|f(x)| \leq x^2 \) for all \(x \in \mathbb{R} \), by the Comparison Lemma, we deduce that \(\lim_{x \to 0} f(x) = 0 \). So \(f \) is continuous at 0. Then, we have
\[
|\frac{f(x) - f(0)}{x - 0}| = \frac{|f(x)|}{|x|} \leq \frac{|x|^2}{|x|} = |x|
\]
for all \(x \neq 0 \). It follows that \(\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = 0 \), i.e. \(f \) is differentiable at 0 and \(f'(0) = 0 \).

Solution to Problem 4.1.10. The idea is to derive two equations in \(a, b \). For \(g \) to be differentiable at 1, it needs at least to be continuous at 1, so we must have
\[
\lim_{x \to 1} g(x) = g(1) \iff \lim_{x \to 1} (a + bx) = 3 \iff a + b = 3
\]
Notice that this condition (namely \(a + b = 3 \)) is also sufficient for continuity of \(g \) at 1.

Secondly, if \(a, b \in \mathbb{R} \) are s.t. \(g \) is continuous at 1, then \(g \) is differentiable at 1 if and only if
\[
\lim_{x \to 1^-} \frac{g(x) - g(1)}{x - 1} = \lim_{x \to 1^+} \frac{g(x) - g(1)}{x - 1} \iff \lim_{x \to 1^-} \frac{3x^2 - 3}{x - 1} = \lim_{x \to 1^+} \frac{a + bx - 3}{x - 1}
\]
\[
\iff \lim_{x \to 1^-} \frac{3(x-1)(x+1)}{x-1} = \lim_{x \to 1^+} \frac{a + bx - a - b}{x - 1}
\]
\[
\iff \lim_{x \to 1^-} 3(x+1) = \lim_{x \to 1^+} \frac{b(x-1)}{x-1} \iff 6 = b
\]
So \(g \) is differentiable at 1 if and only if \(b = 6 \) and \(a = 3 - b = -3 \).

Solution to Problem 4.1.14. We can write
\[
\frac{f(x_0 + h) - f(x_0 - h)}{h} = \frac{f(x_0 + h) - f(x_0) - [f(x_0 - h) - f(x_0)]}{h} = \frac{f(x_0 + h) - f(x_0)}{h} - \frac{f(x_0 - h) - f(x_0)}{h}
\]
\[
= \frac{f(x_0 + h) - f(x_0)}{h} + \frac{f(x_0 + (-h)) - f(x_0)}{-h}
\]
Since \(f \) is differentiable at \(x_0 \), both limits \(\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \) and \(\lim_{h \to 0} \frac{f(x_0 + (-h)) - f(x_0)}{-h} \) exist and are equal with \(f'(x_0) \). Therefore
\[
\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0 - h)}{h} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} + \lim_{h \to 0} \frac{f(x_0 + (-h)) - f(x_0)}{-h} = 2f'(x_0)
\]

Solution to Problem 4.1.16. We have
\[
\frac{f(x^2) - f(0)}{x} = x \cdot \frac{f(x^2) - f(0)}{x^2 - 0}, \quad \forall x \neq 0
\]
Since \(f \) is differentiable at \(x_0 \), the limit \(\lim_{x \to x_0} \frac{f(x^2) - f(0)}{x^2 - 0} \) exists and is a real number. Clearly \(\lim_{x \to 0} x = 0 \). Thus
\[
\lim_{x \to x_0} \frac{f(x^2) - f(0)}{x} = \lim_{x \to x_0} x \cdot \lim_{x \to x_0} \frac{f(x^2) - f(0)}{x^2 - 0} = 0 \cdot f'(0) = 0
\]

Solution to Problem 4.1.19. By differentiating the given relation, we obtain
\[
0 + 1 + 2x + \ldots + nx^{n-1} = \frac{-(n + 1)x^n(1 - x) - (1 - x^{n+1})(-1)}{(1 - x)^2}
\]
which is
\[1 + 2x + \ldots + nx^{n-1} = \frac{1 - (n+1)x^n + nx^{n+1}}{(1-x)^2} \]

Multiplying the last equation by \(x\) and then adding 1 to both sides, gives us
\[1 + x + 2x^2 + \ldots + nx^n = \frac{(1-x)^2 + x - (n+1)x^{n+1} + nx^{n+2}}{(1-x)^2} = \frac{1 - x + x^2 - (n+1)x^{n+1} + nx^{n+2}}{(1-x)^2} \]

We can now differentiate the last equation in order to obtain
\[1 + 2^2x + \ldots + n^2x^{n-1} \]
\[= \frac{[-1 + 2x - (n+1)^2x^n + n(n+2)x^{n+1}](1-x)^2 - [1 - x + x^2 - (n+1)x^{n+1} + nx^{n+2}](2)(1-x)}{(1-x)^4} \]
\[= \frac{[-1 + 2x - (n+1)^2x^n + n(n+2)x^{n+1}](1-x) + 2[1 - x + x^2 - (n+1)x^{n+1} + nx^{n+2}]}{(1-x)^3} \]
\[= \frac{1 + x - (n+1)^2x^n + (2n^2 + 2n - 1)x^{n+1} - n^2x^{n+2}}{(1-x)^3} \]

Solution to Problem 4.2.2. We notice that \(f\) is continuous and strictly decreasing on \((0, \infty)\) (hence \(f\) is one-to-one). Also, we have \(\lim_{x \to 0} f(x) = 1\) and \(\lim_{x \to \infty} f(x) = 0\). So \(\lim f) = (0, 1)\). The point \(y_0 := \sqrt{1/5}\) belongs to \((0, 1)\) and we see that \(f(2) = y_0\). Therefore \(f^{-1}(y_0) = 2\) and applying the derivative of the inverse function formula, we get
\[(f^{-1})'(y_0) = \frac{f'(f^{-1}(y_0))}{f(f^{-1}(y_0))} = \frac{1}{f'(2)} \]

To compute \(f'(2)\) we use the chain rule for the functions \(y \mapsto y^{-1/2}\) and \(x \mapsto 1 + x^2\) (which is the inner function):
\[f'(x) = (-1/2) \cdot (1 + x^2)^{-3/2} \cdot 2x \]
which gives \(f'(2) = -5^{-3/2} \cdot 2 = -\frac{2}{5\sqrt{5}}\) and consequently \((f^{-1})'(y_0) = -\frac{5\sqrt{5}}{2}\).

Solution to Problem 4.2.3. (i) We have to find the inverse function of \(f : (0, \infty) \to \mathbb{R}, f(x) = \frac{1}{x}\). In the equation \(f(x) = y\) we solve for \(x > 0\), provided that \(y > 0\). Thus: \(\frac{1}{x^2} = y \iff (1/x)^2 = y \iff 1/x = \sqrt{y} \iff x = 1/\sqrt{y}\). This implies that \(f^{-1}(y) = 1/\sqrt{y}\) for all \(y > 0\).

Remark: One could have simply verified that the formula given for \(f^{-1}(y)\) verifies \(f(f^{-1}(y)) = y\) for all \(y > 0\) and \(f^{-1}(f(x)) = x\) for all \(x > 0\).

(ii) We need to compute \((f^{-1})'(y)\) in two ways. First, we can directly determine \((f^{-1})'(y) = (y^{-1/2})' = (-1/2)y^{-3/2}\) for all \(y > 0\). Secondly, we use the formula for the derivative of the inverse function:
\[(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))} = \frac{1}{f'(1/\sqrt{y})} = \frac{1}{f'(y^{-1/2})} \]
Since \(f'(x) = -2x^{-3}\), we have that \(f'(y^{-1/2}) = (-2)(y^{-1/2})^{-3} = (-2)y^{3/2}\) which gives \((f^{-1})'(y) = \frac{1}{(-2)y^{3/2}}\).

Solution to Problem 4.2.6. Let \(x > 0\) and for \(h \neq 0\) with \(|h|\) small enough, we have
\[\frac{g(x + h) - g(x)}{h} = c \cdot \frac{f(cx + ch) - f(cx)}{ch} \]
Since \(f\) is differentiable, we get that \(g\) is differentiable at \(x\) and
\[g'(x) = \lim_{h \to 0} \frac{g(x + h) - g(x)}{h} = c \cdot \lim_{h \to 0} \frac{f(cx + ch) - f(cx)}{ch} = c \cdot f'(cx) \]

Solution to Problem 4.2.9. We can differentiate (w.r.t \(x\)) the relation \(f(x) = -f((-1)x)\) to get (see the above problem) \(f'(x) = -(-1)f'((-1)x) \iff f'(x) = f'(-x)\).
Solution to Problem 4.3.15. Consider the function \(h : \mathbb{R} \to \mathbb{R} \), \(h(x) = \frac{f(x)}{g(x)} \) (this is well defined since \(h(x) \neq 0 \) for all \(x \in \mathbb{R} \)). We notice that

\[
h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} = 0, \quad \forall x \in \mathbb{R}
\]

It follows that \(h(x) \) is constant, i.e. there exists \(c \in \mathbb{R} \) s.t. \(h(x) = c \Leftrightarrow f(x) = cg(x) \).

Solutions to Problem 4.3:21 Fix \(x \). Then

\[
f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
\]

and \(|\frac{f(x+h)-f(x)}{h}| \leq C|h| \), thus the above limit exists and equals 0. This proves that \(f' \) exists and is equal to 0 on \(\mathbb{R} \), thus \(f \) is constant.