HW 5 PROBLEMS

From Rudin Chapter 3 solve: 1,3,16,17,20,21,23.
Also solve the following problems:

Problem 1. Assume that \(\{x_n\} \) is a Cauchy sequence in the metric space \(X \) and that its range is finite. Prove that there exists a constant \(c \in X \) and \(N \) such that \(x_n = C, \forall n \geq N \).

Problem 2. (Squeeze Lemma) If \(\{a_n\}, \{b_n\}, \{c_n\} \) be real-valued sequences with the property that
\[
a_n \leq b_n \leq c_n.
\]
If \(\lim_{n \to \infty} a_n = l \) and \(\lim_{n \to \infty} c_n = l \), then prove that \(\lim_{n \to \infty} b_n = l \).

Problem 3. Prove that if the real-valued sequence \(\{a_n\} \) converges to 0, and the sequence \(\{b_n\} \) is bounded, then \(\lim_{n \to 0} a_n b_n = 0 \).

Problem 4. Prove that if the real-valued sequence is such that \(\lim_{n \to \infty} |a_n| = 0 \), then \(\lim_{n \to \infty} a_n = 0 \).