HOMEWORK 1 SOLUTIONS

Ex 1.1 We argue by contradiction: Suppose $r+x_{1}$ is a rational number. Since \mathbb{Q} is a field and $r \in \mathbb{Q},-r \in \mathbb{Q}$. Therefore $x_{1}=\left(r+x_{1}\right)+(-r) \in \mathbb{Q}$ which contradict the hypothesis. Therefore get $r+x_{1}$ is not rational.
Suppose $r x_{2}$ is a rational number. Since \mathbb{Q} is a field and $r \in \mathbb{Q}(r \neq 0), 1 / r \in \mathbb{Q}$. Therefore $x_{2}=\left(r x_{2}\right)(1 / r) \in \mathbb{Q}$, which contradict the hypothesis.. Thus $r x_{2}$ is irrational.

Ex 1.2 We use contradiction. Assume there is a rational number q whose square is 12 , then r can be represented as n / m, where $n, m \in \mathbb{Z}$ and their greatest common divisor is $1($ denoted $\operatorname{bygcd}(m, n)=1)$. Then $r^{2}=(n / m)^{2}=12$, which is equivalent to $n^{2}=12 m^{2}$. Note that 3 can devide the right hand side $12 m^{2}$, thus 3 can devide the left hand side n^{2} (denoted by $3 \mid n^{2}$). Since 3 is prime, $3 \mid n$, thus n can be represented as $3 n_{1}\left(n_{1} \in \mathbb{Z}\right)$. Then we get $9 n_{1}^{2}=12 m^{2}$, which is equivalent to $3 n_{1}^{2}=4 m^{2}$. Notice now on the left hand $3 \mid 3 n_{1}^{2}$, we get $3 \mid 4 m^{2}$. Since 3 is prime, $3 \mid m$. Now we get $3 \mid n$ and $3 \mid m$, which contradict the assumption that $\operatorname{gcd}(m . n)=1$. Thus such q does NOT exisit.

Ex1.5 First notice A is nonempty and bounded below. Thus $\inf A$ exists by THM 1.19 in the textbook. Since A is nonempty and bounded below, $-A=\{-x \mid x \in A\}$ is nonempty snd bounded above. Therefore $\sup (-A)$ exists. Let $\alpha=\inf A$ and $\beta=-\sup (-A)$. To show $\alpha=\beta$, we only need to show $\alpha \leq \beta$ and $\alpha \geq \beta$.

By definition of α, α is a lower bound of A, i.e. $\alpha \leq x, \forall x \in A$. By multiplying -1 on both sides, we get $-\alpha \geq-x, \forall x \in A$, which is equivalent to $-\alpha$ is an upper bound of $-A$. Thus $-\alpha \geq-\beta$ by the definition of β; from this it follows that $\alpha \leq \beta$.
On the other hand, by definition of $\beta,-\beta$ is an upper bound of $-A$, i.e. $-\beta \geq$ $-x, \forall x \in A$. That is equivalent to $\beta \leq x, \forall x \in A$. This means β is a lower bound of A. Then by the definition of $\alpha, \alpha \geq \beta$.
Combining the two inequalities, we obtain $\alpha=\beta$ as desired.

