HOMEWORK 1 SOLUTIONS

Ex 1.1 We argue by contradiction: Suppose \(r + x_1 \) is a rational number. Since \(\mathbb{Q} \) is a field and \(r \in \mathbb{Q} \), \(-r \in \mathbb{Q} \). Therefore \(x_1 = (r + x_1) + (-r) \in \mathbb{Q} \) which contradict the hypothesis. Therefore get \(r + x_1 \) is not rational.

Suppose \(rx_2 \) is a rational number. Since \(\mathbb{Q} \) is a field and \(r \in \mathbb{Q} \) \((r \neq 0)\), \(1/r \in \mathbb{Q} \). Therefore \(x_2 = (rx_2)(1/r) \in \mathbb{Q} \), which contradict the hypothesis. Thus \(rx_2 \) is irrational.

Ex 1.2 We use contradiction. Assume there is a rational number \(q \) whose square is 12, then \(r \) can be represented as \(n/m \), where \(n, m \in \mathbb{Z} \) and their greatest common divisor is 1 (denoted by \(\gcd(m,n) = 1 \)). Then \(r^2 = (n/m)^2 = 12 \), which is equivalent to \(n^2 = 12m^2 \). Note that 3 can divide the right hand side \(12m^2 \), thus 3 can divide the left hand side \(n^2 \) (denoted by \(3|n^2 \)). Since 3 is prime, \(3|n \), thus \(n \) can be represented as \(3n_1 \) \((n_1 \in \mathbb{Z})\). Then we get \(9n_1^2 = 12m^2 \), which is equivalent to \(n_1^2 = 4m^2 \). Notice now on the left hand \(3|n_1 \), we get \(3|m \). Now we get \(3|n \) and \(3|m \), which contradict the assumption that \(\gcd(m,n) = 1 \). Thus such \(q \) does NOT exist.

Ex 1.5 First notice \(A \) is nonempty and bounded below. Thus \(\inf A \) exists by THM 1.19 in the textbook. Since \(A \) is nonempty and bounded below, \(-A = \{-x \mid x \in A\} \) is nonempty and bounded above. Therefore \(\sup(-A) \) exists. Let \(\alpha = \inf A \) and \(\beta = -\sup(-A) \). To show \(\alpha = \beta \), we only need to show \(\alpha \leq \beta \) and \(\alpha \geq \beta \).

By definition of \(\alpha \), \(\alpha \) is a lower bound of \(A \), i.e. \(\alpha \leq x \), \(\forall x \in A \). By multiplying \(-1\) on both sides, we get \(-\alpha \geq -x \), \(\forall x \in A \), which is equivalent to \(-\alpha \) is an upper bound of \(-A\). Thus \(-\alpha \geq -\beta \) by the definition of \(\beta \); from this it follows that \(\alpha \leq \beta \).

On the other hand, by definition of \(\beta \), \(-\beta \) is an upper bound of \(-A\), i.e. \(-\beta \geq -x \), \(\forall x \in A \). That is equivalent to \(\beta \leq x \), \(\forall x \in A \). This means \(\beta \) is a lower bound of \(A \). Then by the definition of \(\alpha \), \(\alpha \geq \beta \).

Combining the two inequalities, we obtain \(\alpha = \beta \) as desired.