HOMEWORK 1 SOLUTIONS

Ex 1.1 We argue by contradiction: Suppose $r + x_1$ is a rational number. Since \mathbb{Q} is a field and $r \in \mathbb{Q}$, $-r \in \mathbb{Q}$. Therefore $x_1 = (r + x_1) + (-r) \in \mathbb{Q}$ which contradict the hypothesis. Therefore get $r + x_1$ is not rational.

Suppose rx_2 is a rational number. Since \mathbb{Q} is a field and $r \in \mathbb{Q}$ $(r \neq 0)$, $1/r \in \mathbb{Q}$. Therefore $x_2 = (rx_2)(1/r) \in \mathbb{Q}$, which contradict the hypothesis. Thus rx_2 is irrational.

Ex 1.2 We use contradiction. Assume there is a rational number q whose square is 12, then r can be represented as n/m, where $n, m \in \mathbb{Z}$ and their greatest common divisor is 1 (denoted bygcd(m, n) = 1). Then $r^2 = (n/m)^2 = 12$, which is equivalent to $n^2 = 12m^2$. Note that 3 can devide the right hand side $12m^2$, thus 3 can devide the left hand side n^2 (denoted by $3|n^2$). Since 3 is prime, 3|n, thus n can be represented as $3n_1$ ($n_1 \in \mathbb{Z}$). Then we get $9n_1^2 = 12m^2$, which is equivalent to $3n_1^2 = 4m^2$. Notice now on the left hand $3|3n_1^2$, we get $3|4m^2$. Since 3 is prime, 3|m. Now we get 3|n and 3|m, which contradict the assumption that gcd(m.n) = 1. Thus such q does NOT exisit.

Ex1.5 First notice A is nonempty and bounded below. Thus inf A exists by THM 1.19 in the textbook. Since A is nonempty and bounded below, $-A = \{-x \mid x \in A\}$ is nonempty snd bounded above. Therefore $\sup(-A)$ exists. Let $\alpha = \inf A$ and $\beta = -\sup(-A)$. To show $\alpha = \beta$, we only need to show $\alpha \leq \beta$ and $\alpha \geq \beta$.

By definition of α , α is a lower bound of A, i.e. $\alpha \leq x, \forall x \in A$. By multiplying -1 on both sides, we get $-\alpha \geq -x, \forall x \in A$, which is equivalent to $-\alpha$ is an upper bound of -A. Thus $-\alpha \geq -\beta$ by the definition of β ; from this it follows that $\alpha \leq \beta$.

On the other hand, by definition of β , $-\beta$ is an upper bound of -A, i.e. $-\beta \ge -x$, $\forall x \in A$. That is equivalent to $\beta \le x$, $\forall x \in A$. This means β is a lower bound of A. Then by the definition of α , $\alpha \ge \beta$.

Combining the two inequalities, we obtain $\alpha = \beta$ as desired.