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Exercise 1.6
(a) Let s = mq = np. By Theorem 1.21, there is only one c > 0 such that cnq = bs. Then notice

(bm)1/n and (bp)1/q both have this property.
(b) Suppose r = p

q , s = m
n . Then compute br+s using the law of exponents for integers. By

Corollary of Thm 1.21, the result follows from part (a).
(c) A generic element in B(r) is of the form bt with t ≤ r, thus bt ≤ br. This makes br the

maximum element in B(r), therefore br = supB(r).
Here we are using the fact that if p < q, p, q ∈ Q and b > 1, then bp < bq. Since b > 1 we claim

that for any m,n ∈ Z, the following holds true:

m < n⇔ bm < bn

Indeed, bn − bm = bm(bn−m − 1) > 0⇔ bn−m − 1 > 0⇔ bn−m > 1⇔ n−m > 0.
Getting back to our claim, let p = m1

n1
, q = m2

n2
with m1,m2, n1, n2 ∈ Z, n1, n2 > 0. p < q

reads m1n2 < m2n1 and from our argument earlier we obtain bm1n2 < bm2n1 . We write bm1n2 =
(bp)n1n2 , bm2n1 = (bq)n1n2 , let n = n1n2 and continue with

0 < bm2n1−bm1n2 = (bq)n1n2−(bp)n1n2 = (bq)n−(bp)n = (bq−bp)
(
(bq)n−1 + (bq)n−2bp + ...+ (bp)n−1

)
Since the term in the parentheses is positive, we conclude with bq − bp > 0, thus bq > bp and we
are done.

(d) To have a more elegant solution we remark that if we define B̄(x) = {bq : q < x} and
note that for x /∈ Q, B̄(x) = B(x) while for x ∈ Q, B̄(x) = B(x) \ {bx}. Thus if x /∈ Q,
supB(x) = sup B̄(x). If x ∈ Q, then bx is an upper bound for B̄(x) and we need to show it is the

least upper bound. We compute bx − bx−
1
n = bx−

1
n (b

1
n − 1) = bx−

1
n

b−1
b
n−1
n +b

n−2
n +...+1

≤ 1
nb

x(b − 1)

and the last expression can be made as small as we want by the Archimedian property, therefore
bx = sup B̄(x).

Given two subsets X,Y of R, we define X ·Y = {x · y|x ∈ X, y ∈ Y }. Notice that B(x) ·B(y) =
{brbs : r < x, s < y} = {br+s : r < x, s < y}. It is obvious that r + s < x + y, therefore
B(x) · B(y) ⊂ B(x + y). It takes a little more work to show the reverse B(x + y) ⊂ B(x) · B(y).
Given an element in B(x+ y), we know it has the form bq with q ∈ Q and q < x+ y. Our goal is
to show that we can find r, s ∈ Q with q = r + s, r < x, s < y since then bq = br · bs ∈ B(x) · B(y)
and we are done. Let ε = (x + y) − q > 0. We know that there exist r ∈ Q with x − ε < r < x
and we let s = q − r. We have s < q − (x − ε) = y and s ∈ Q (since q, r ∈ Q). We conclude with
B(x+ y) = B(x) ·B(y).

The argument is complete if we prove that sup(X · Y ) = supX · supY for X,Y ⊂ R+. If
supX = 0 or supY = 0, then X = {0} or Y = {0} and the conclusion is trivial. Therefore, in
what follows, we have that supX > 0 and supY > 0. For any x ∈ X and any y ∈ Y we have
x ≤ supX, y ≤ supY , therefore xy ≤ supX supY,∀x ∈ X, y ∈ Y . This implies that supX supY is
an upper bound for X · Y , thus sup(X · Y ) ≤ supX supY .

Next we have that xy ≤ sup(X ·Y ),∀x ∈ X, y ∈ Y . We fix x ∈ X with x > 0 and conclude that

y ≤ sup(X·Y )
x ,∀y ∈ Y , thus sup(X·Y )

x is an upper bound for Y and supY ≤ sup(X·Y )
x . From this it

follows that x supY ≤ sup(X · Y ) for any x ∈ X with x > 0; but now it is obvious that it holds for

x = 0 as well. Since supY > 0, we obtain that x ≤ sup(X·Y )
supY for all x ∈ X hence supX ≤ sup(X·Y )

supY
and further that supX supY ≤ sup(X · Y ).
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Since we established the two inequalities sup(X · Y ) ≤ supX supY and supX supY ≤ sup(X ·
Y ), we can conclude supX supY = sup(X · Y ). This finishes our argument.

Exercise 1.8
By part (a) of Proposition 1.18, either i of −i is positive. So −1 = i2 = (−i)2 = −1 has to

be positive. Since (−1)2 = 1 is positive, we have both −1 and 1 are positive. Contradition with
Proposition 1.18 part (a) for an ordered field.

Exercise 1.10 Compute following the rule of complex numbers and notice when taking off the
square root, you need to consider the sign.

Exercise 1.11 If z = 0, we can let r = 0 and w = 1 but in this case w is not unique. Otherwise,
let r = |z| and w = z

|z| . Now, w and r are uniquely determined by z. This is because z = rw

implies r = r|w| = |rw| = |z|.
Exercise 1.12
By Theorem 1.33, the claim has been shown when n = 2 in part (e). We can apply the result

and do induction on n. Assume it holds for n− 1 and show the result for n.

|z1 + z2 + · · ·+ zn| = |(z1 + · · ·+ zn−1) + zn| (1)

≤ |z1 + z2 + · · ·+ zn−1|+ |zn| (2)

≤ |z1|+ |z2|+ · · ·+ |zn−1|+ |zn|. (3)

Exercise 1.13
Since x = x− y + y, apply the triangle inequality and we have

|x| ≤ |x− y|+ |y|.

Similarly, y = y − x+ x gives
|y| ≤ |y − x|+ |x|.

Combining them gives
∣∣|x| − |y|∣∣ ≤ |x− y|.

Exercise 1.16 You can interpret geometrically first to get a sense of the problem. (a) Assume
w is a vector satisfying

w · (x− y) = 0

|w|2 = r2 − d2

4
.

From linear algebra, we know only one component of a solution w is fixed and the other components
of the solution is arbitrary. In addition, if w 6= 0, then there is a unique positive number s > 0
such that sw satisfies both equations given r2 − d2

4 > 0. So we have inifitely many solutions.
(b) Notice with the condition 2r = d, we have

|x− y| = d = |x− z|+ |z− y|.

The proof of the triangle inequality shows that the equality can hold only when the two vectors is
a scalar multiple of the other. Here x− z = s(z− y) for some s > 0. The assumption gives s = 1
immediately then. Thus z is uniquely determined as

z =
x + y

2
.
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(c) Now if 2r < d,
|x− y| = d > |x− z|+ |z− y|.

Contradiction with the triangle inequality. So no solutions for z.
Note: When k = 2, there are exactly 2 solutions in case (a). When k = 1, there is no solution

in case (a). The other results in part (b) and (c) does not need to be modified.
Exercise 1.17
Compute |x + y|2 = (x + y) · (x + y) and |x− y|2 = (x− y) · (x− y) and expand them. Sum

up and you will have the right hand side of the equation. Geometric interpretation: the sum of the
squares on the diagonals of a parallelogram equals the sum of the squares on the sides.

Exercise 1.18
If x has any component equal to 0, then y can be taken to be 1 on the corresponding com-

ponent and all other components to be 0. If all components of x is nonzero, we can let y =
(−x2, x1, 0, . . . , 0). It is not true for k = 1 though since the product of two nonzero real numbers
is nonzero.
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